XIE Jian, LONG Si-chun, ZHOU Cui. Classical Least Squares Method for Inequality Constrained PEIV Model[J]. Geomatics and Information Science of Wuhan University, 2021, 46(9): 1291-1297. DOI: 10.13203/j.whugis20190196
Citation: XIE Jian, LONG Si-chun, ZHOU Cui. Classical Least Squares Method for Inequality Constrained PEIV Model[J]. Geomatics and Information Science of Wuhan University, 2021, 46(9): 1291-1297. DOI: 10.13203/j.whugis20190196

Classical Least Squares Method for Inequality Constrained PEIV Model

Funds: 

The National Natural Science Foundation of China 41704007

The National Natural Science Foundation of China 41877283

The National Natural Science Foundation of China 42074016

More Information
  • Author Bio:

    XIE Jian, PhD, specializes in surveying adjustment and data processing. E-mail: hsiejian841006@163.com

  • Received Date: December 01, 2020
  • Published Date: September 17, 2021
  •   Objectives  The inequality constrained partial errors-in-variables(ICPEIV) model is mainly solved by linear approximation method and nonlinear programming algorithms. The linear approximation method is computationally inefficient and the nonlinear programming algorithms are complicated because they are based on optimization theory. The nonlinear programming algorithms are impracticable to apply in surveying fields because the connections between nonlinear programming methods and classical adjustment have not been established.
      Methods  Under the total least squares(TLS) criterion, the inequality constrained TLS problem is transformed into the quadratic programming according to the Kuhn-Tucker condition. Then an improved Jacobian iteration approach is proposed to solve the quadratic programming.
      Results  The proposed method does not require the linearization process and has the same form with the classical least squares which is easy to code.
      Conclusions  The numerical examples show that the proposed method is efficient in computation and concise in form and it is a beneficial extension of classical least squares theory.
  • [1]
    Neitzel F. Generalization of Total Least-Squares on Example of Unweighted and Weighted 2D Similarity Transformation[J]. Journal of Geodesy, 2010, 84 (12): 751-762 doi: 10.1007/s00190-010-0408-0
    [2]
    Akyilmaz O. Total Least Squares Solution of Coordinate Transformation[J]. Survey Review, 2007, 39 (303): 68-80 doi: 10.1179/003962607X165005
    [3]
    Zhou Y, Fang X. A Mixed Weighted Least Squares and Weighted Total Least Squares Adjustment Method and Its Geodetic Applications[J]. Survey Review, 2016, 48 (351): 421-429 doi: 10.1179/1752270615Y.0000000040
    [4]
    Tong X H, Jin Y M, Zhang S L, et al. Bias-Corrected Weighted Total Least-Squares Adjustment of Condition Equations[J]. Journal of American Surveying Engineering, 2014, 141 (2): 04014013 http://d.wanfangdata.com.cn/periodical/26f7db7fb994669a82ad317964b29beb
    [5]
    陈义, 陆珏, 郑波. 总体最小二乘方法在空间后方交会中的应用[J]. 武汉大学学报·信息科学版, 2008, 33 (12): 1 271-1 274 http://ch.whu.edu.cn/article/id/1776

    Chen Yi, Lu Jue, Zheng Bo. Application of Total Least Squares to Space Resection[J]. Geomatics and Information Science of Wuhan University, 2008, 33(12): 1 271-1 274 http://ch.whu.edu.cn/article/id/1776
    [6]
    Xu C J, Wang L Y, Wen Y M, et al. Strain Rates in the Sichuan-Yunnan Region Based upon the Total Least Squares Heterogeneous Strain Model from GPS Data[J]. Terrestrial Atmospheric and Oceanic Sciences, 2011, 22 (2): 133-147 doi: 10.3319/TAO.2010.07.26.02(TibXS)
    [7]
    Fang X. Weighted Total Least Squares: Necessary and Sufficient Conditions, Fixed and Random Parameters[J]. Journal of Geodesy, 2013, 87(8): 733-749 doi: 10.1007/s00190-013-0643-2
    [8]
    Mahboub V. On Weighted Total Least-Squares for Geodetic Transformations[J]. Journal of Geodesy, 2012, 86 (5): 359-367 doi: 10.1007/s00190-011-0524-5
    [9]
    Shen Y Z, Li B F, Chen Y. An Iterative Solution of Weighted Total Least-Squares Adjustment[J]. Journal of Geodesy, 2011, 85 (4): 229-238 doi: 10.1007/s00190-010-0431-1
    [10]
    Amiri-Simkooei A, Jazaeri S. Weighted Total Least Squares Formulated by Standard Least Squares Theory[J]. Journal of Geodetic Sciences, 2012, 2 (2): 113-124 doi: 10.2478/v10156-011-0036-5
    [11]
    Schaffrin B, Felus Y A. An Algorithmic Approach to the Total Least-Squares Problem with Linear and Quadratic Constraints[J]. Studia Geophysica et Geodaetica, 2009, 53 (1): 1-16 doi: 10.1007/s11200-009-0001-2
    [12]
    Zhang S L, Tong X H, Zhang K. A Solution to EIV Model with Inequality Constraints and Its Geodetic Applications[J]. Journal of Geodesy, 2013, 87 (1): 23-28 doi: 10.1007/s00190-012-0575-2
    [13]
    Fang X. On Non-combinatorial Weighted Total Least Squares with Inequality Constraints[J]. Journal of Geodesy, 2014, 88 (8): 805-816 doi: 10.1007/s00190-014-0723-y
    [14]
    Xu P L, Liu J N, Shi C. Total Least Squares Adjustment in Partial Errors-in-Variables Models: Algorithm and Statistical Analysis[J]. Journal of Geodesy, 2012, 86 (8): 661-675 doi: 10.1007/s00190-012-0552-9
    [15]
    Shi Y, Xu P L, Liu J N, et al. Alternative Formulae for Parameter Estimation in Partial Errors-inVariables Models[J]. Journal of Geodesy, 2015, 89 (1): 13-16 doi: 10.1007/s00190-014-0756-2
    [16]
    Zeng W X, Liu J N, Yao Y B. On Partial Errors-inVariables Models with Inequality Constraints of Parameters and Variables[J]. Journal of Geodesy, 2015, 89 (2): 111-119 doi: 10.1007/s00190-014-0775-z
    [17]
    陈宝林. 最优化理论与算法[M]. 北京: 清华大学出版社, 2005

    Chen Baolin. Theory and Algorithm in Optimization[M]. Beijing: Tsinghua University Press, 2005
    [18]
    谢建, 龙四春, 周璀. 不等式约束PEIV模型的最优性条件及SQP算法[J]. 武汉大学学报·信息科学版, 2020, 45 (7): 1 002-1 007 doi: 10.13203/j.whugis20180297

    Xie Jian, Long Sichun, Zhou Cui. Optimality Conditions of Inequality Constrained Partial EIV Model and the SQP Algorithm[J]. Geomatics and Information Science of Wuhan University, 2020, 45(7): 1 002-1 007 doi: 10.13203/j.whugis20180297
  • Related Articles

    [1]ZHAO Binbin, XIE Jianxiang, ZHANG Hongkui, WANG Liwei, WANG Qian. Geographic Line Extraction Algorithm Based on Morphing Transformation Techniques[J]. Geomatics and Information Science of Wuhan University, 2025, 50(1): 174-183. DOI: 10.13203/j.whugis20220493
    [2]WANG Pengxin, CHEN Chi, ZHANG Yue, ZHANG Shuyu, LIU Junming. Estimation of Winter Wheat Yield Using Assimilated Bi-variables and PCA-Copula Method[J]. Geomatics and Information Science of Wuhan University, 2022, 47(8): 1201-1212. DOI: 10.13203/j.whugis20220038
    [3]XIE Yanxin, WU Xiaocheng, HU Xiong. Using One-Dimensional Variational Assimilation Algorithm to Obtain Atmospheric Refractive Index from Ground-Based GPS Phase Delay[J]. Geomatics and Information Science of Wuhan University, 2018, 43(7): 1042-1047. DOI: 10.13203/j.whugis20160238
    [4]LI Jingzhong, ZHANG Jinming. A Morphing Method for Smooth Area Features Based on Fourier Transform[J]. Geomatics and Information Science of Wuhan University, 2017, 42(8): 1104-1109. DOI: 10.13203/j.whugis20150157
    [5]OU Ming, ZHEN Weimin, XU Jisheng, YU Xiao, LIU Yiwen, LIU Dun. Regional Ionospheric TEC Reconstruction by Data Assimilation Technique[J]. Geomatics and Information Science of Wuhan University, 2017, 42(8): 1075-1081. DOI: 10.13203/j.whugis20150297
    [6]WANG Hongwei, HUANG Chunlin, HOU Jinliang, LI Xiaoying. Estimation of Snow Depth from Multi-source Data Fusion Based on Data Assimilation Algorithm[J]. Geomatics and Information Science of Wuhan University, 2016, 41(6): 848-852. DOI: 10.13203/j.whugis20140568
    [7]SONG Fucheng, SHI Shuangshuang, FENG Jiandi. Construction of Ionospheric TEC Assimilation Model Based on Chapman Function[J]. Geomatics and Information Science of Wuhan University, 2016, 41(6): 784-790. DOI: 10.13203/j.whugis20150101
    [8]ZHANG Xianfeng, ZHAO Jiepeng. System for Soil Moisture Retrieval and Data Assimilation from Remotely Sensed Data in Arid Regions[J]. Geomatics and Information Science of Wuhan University, 2012, 37(7): 794-799.
    [9]WU Mingguang, LUE Guonian, CHEN Taisheng. Data Structure Assimilation of Marker Symbol[J]. Geomatics and Information Science of Wuhan University, 2011, 36(2): 239-243.
    [10]CHEN Rongyuan, LIU Guoying, WANG Leiguang, QIN Qianqing. Fusion Algorithm of Multispectral and Panchromatic Images Based on the Data Assimilation[J]. Geomatics and Information Science of Wuhan University, 2009, 34(8): 919-923.
  • Cited by

    Periodical cited type(13)

    1. 杨忠荣. 低成本车载RTK高精度定位方法. 地理空间信息. 2025(03): 96-100 .
    2. 程建华,陈思成,臧楠,程思翔,赵国晶,马子凡. 附加自适应短时高程变化率约束的PPP/INS紧组合增强模型. 测绘学报. 2024(09): 1761-1776 .
    3. 王勋,崔先强,高天杭. 动力学模型自适应滤波算法研究. 武汉大学学报(信息科学版). 2023(05): 741-748 .
    4. 张一,尹潇,宋海娜. 运动方向约束的自适应SRUKF目标跟踪算法. 导航定位学报. 2023(05): 53-59 .
    5. 李清泉,吕世望,陈智鹏,殷煜,张德津. 冬奥会国家速滑馆超大地坪平整度快速测量. 武汉大学学报(信息科学版). 2022(03): 325-333 .
    6. 辜声峰,戴春齐,何成鹏,方礼喆,王梓豪. 面向城市车载导航的多系统PPP-RTK/VIO半紧组合算法性能分析. 武汉大学学报(信息科学版). 2021(12): 1852-1861 .
    7. 陶晓晓,卢小平,路泽忠,周雨石,余振宝. WiFi融合环境光定位方法研究. 测绘科学. 2020(06): 57-61+72 .
    8. 张辰东,王兆瑞. 一种长隧道内高速列车实时高精度定位方法. 计算机仿真. 2020(09): 124-128+188 .
    9. 尹潇,柴洪洲,向民志,杜祯强. 附加运动学约束的BDS抗差UKF导航算法. 测绘学报. 2020(11): 1399-1406 .
    10. 王诒国,潘孝星. 基于马氏距离的抗差卡尔曼滤波算法在组合导航中的应用. 北京测绘. 2020(12): 1810-1814 .
    11. 吕大千,曾芳玲,欧阳晓凤,于合理. 时频传递的改进整数相位钟方法. 测绘学报. 2019(07): 889-897 .
    12. 邓中亮,尹露,唐诗浩,刘延旭,宋汶轩. 室内定位关键技术综述. 导航定位与授时. 2018(03): 14-23 .
    13. 张迪,施昆,李照永. 移动测量系统的GNSS/INS组合定位方法的对比研究. 软件. 2018(08): 110-116 .

    Other cited types(18)

Catalog

    Article views (1518) PDF downloads (96) Cited by(31)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return