OU Ming, ZHEN Weimin, XU Jisheng, YU Xiao, LIU Yiwen, LIU Dun. Regional Ionospheric TEC Reconstruction by Data Assimilation Technique[J]. Geomatics and Information Science of Wuhan University, 2017, 42(8): 1075-1081. DOI: 10.13203/j.whugis20150297
Citation: OU Ming, ZHEN Weimin, XU Jisheng, YU Xiao, LIU Yiwen, LIU Dun. Regional Ionospheric TEC Reconstruction by Data Assimilation Technique[J]. Geomatics and Information Science of Wuhan University, 2017, 42(8): 1075-1081. DOI: 10.13203/j.whugis20150297

Regional Ionospheric TEC Reconstruction by Data Assimilation Technique

Funds: 

International Science & Technology Cooperation Program of China 2014DFR-21280

Equipment and Technology Foundation Program 315030409

More Information
  • Author Bio:

    OU Ming, PhD candidate, specializes in ionospheric tomography and ionospheric data assimilation. E-mail: ohm1122@163.com

  • Received Date: December 19, 2015
  • Published Date: August 04, 2017
  • Accurate determination of the state of ionosphere has become a key point as radio-wave information systems become more spatially dependent. Data assimilation technique is an important method to obtain ionospheric parameters that is useful in ionospheric study. To provide specification of the ionosphere total electron content(TEC)for current conditions, a new ionospheric TEC reconstruction method is developed in this paper by utilizing data assimilation technique. With the output of NeQuick model as background field and Kalman filter as assimilation algorithm, regional three dimensional ionospheric electron density reconstruction can be implemented by data assimilation of 39 GPS observations from continuously operating reference stations(CORS) of NOAA(National Oceanic and Atmospheric Administration), while TEC map can be obtained by vertical integral of electron density al. For reducing the reduction in the computational requirements, the regional TEC maps are generated accordingly with the spatial and temporal resolution being 2.5° ×5° and 1 hour respectively. Data assimilation results have been validated through the comparison with 10 independent GPS observations, the NeQuick model values and the global ionosphere maps(GIM) from Center for Orbit Determination of Europe(CODE) over 31 days in December, 2014. Results show that data assimilation derived TEC maps are more effective in reducing the mean error and standard error of TEC than NeQuick model and GIM data. These results demonstrate the potential of data assimilation technique in providing accurate regional or even global specification of the ionosphere.
  • [1]
    王劲松, 吕建永.空间天气[M].北京:气象出版社, 2010

    Wang Jinsong, Lv Jianyong. Space Weather[M]. Beijing:China Meteorological Press, 2010
    [2]
    赵文化, 曹静, 毛田, 等.华南地区GPS-TEC监测产品分析与设计[J].广东气象, 2008, 30(5):8-11 http://www.cnki.com.cn/Article/CJFDTOTAL-GDCX200805005.htm

    Zhao Wenhua, Cao Jing, Mao Tian, et al. Design of GPS-TEC Monitor Product for South China Region[J]. Guangdong Meteorology, 2008, 30(5):8-11 http://www.cnki.com.cn/Article/CJFDTOTAL-GDCX200805005.htm
    [3]
    万卫星, 宁百齐, 刘立波, 等, 中国电离层TEC现报系统[J].地球物理学进展, 2007, 22(4):1040-1045 http://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGDW200709001006.htm

    Wan Weixing, Ning Baiqi, Liu Libo, et al. Nowcasting the Ionospheric Total Electron Content over China[J]. Progress in Geophysics, 2007, 22(4):1040-1045 http://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGDW200709001006.htm
    [4]
    Coco D. GPS Satellites of Opportunity for Ionospheric Monitoring[J]. GPS World:Innovation, 1991:47-50 https://www.researchgate.net/publication/313068824_GPS_satellites_of_opportunity_for_ionospheric_monitoring
    [5]
    Sardon E, Ruis A, Zarraoa N. Estimation of the Transmitter and Receiver Differential Biases and the Ionospheric Total Electron Content from Global Positioning System Observations[J]. Radio Sci, 1994, 29(3):577-586 doi: 10.1029/94RS00449
    [6]
    Mannucci A J, Wilson B D, Yuan D N, et al. A Global Mapping Technique for GPS-Derived Ionospheric Total Electron Content Measurements[J].Radio Sci., 1998, 33:565-582 doi: 10.1029/97RS02707
    [7]
    Yuan Yunbin, Ou Jikun.Differential Areas for Different Stations (DADS):A New Method of Establishing Grid Ionospheric Model[J].Chin. Sci. Bull., 2002, 47(12):1033-1036 doi: 10.1007/BF02907577
    [8]
    毛田, 万卫星, 孙凌峰.用Kriging方法构建中纬度区域电离层TEC地图[J].空间科学学报, 2007, 27(4):279-285 doi: 10.11728/cjss2007.04.279

    Mao Tian, Wan Weixing, Sun Lingfeng. Central and Northern China TEC Map Using the Kriging Method[J]. Chin. J. Space Sci, 2007, 27(4):279-285 doi: 10.11728/cjss2007.04.279
    [9]
    柳景斌, 王泽民, 王海军, 等.利用球冠谐分析方法和GPS数据建立中国区域电离层TEC模型[J].武汉大学学报·信息科学版, 2008, 33(8):792-795 http://ch.whu.edu.cn/CN/abstract/abstract1682.shtml

    Liu Jingbin, Wang Zemin, Wang Haijun, et al. Modeling Regional Ionosphere Using GPS Measurements over China by Spherical Cap Harmonic Analysis Methodology[J].Geomatics and Information Science of Wuhan University, 2008, 33(8):792-795 http://ch.whu.edu.cn/CN/abstract/abstract1682.shtml
    [10]
    翁利斌, 方涵先, 杨升高, 等.基于IRI背景场的单站电离层TEC地图重构技术[J].空间科学学报, 2011, 31(4):453-458 doi: 10.11728/cjss2011.04.453

    Weng Libin, Fang Hanxian, Yang Shenggao, et al. Technique of Reconstructing Ionospheric TEC Map with the Data of Single Station Based on the Background Field by Using IRI[J].Chin. J. Space Sci, 2011, 31(4):453-458 doi: 10.11728/cjss2011.04.453
    [11]
    乐新安, 万卫星, 刘立波, 等.基于Gauss-Markov卡尔曼滤波的电离层数值同化现报预报系统的构建-以中国及周边地区为例的观测系统模拟试验[J].地球物理学报, 2010, 53(4):787-795 http://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201004004.htm

    Yue Xin'an, Wan Weixing, Liu Libo, et al. Development of an Ionospheric Numerical Assimilation Nowcast and Forecast System Base on Gauss-Markov Kalman Filter-An Observation System Simulation Experiment Taking Example for China and Its Surrounding Area[J]. Chinese J. Geophys., 2010, 53(4):787-795 http://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201004004.htm
    [12]
    欧明, 甄卫民, 徐继生, 等.电离层多源数据同化方法研究[J], 电波科学学报, 2015, 30(1):147-152 http://www.cnki.com.cn/Article/CJFDTOTAL-DBKX201501026.htm

    Ou Ming, Zhen Weimin, Xu Jisheng, et al. Research on Multisource Data Assimilation of Ionosphere[J].Chinese Journal of Radio Science, 2015. 30(1):147-152 http://www.cnki.com.cn/Article/CJFDTOTAL-DBKX201501026.htm
    [13]
    Geir E. Data Assimilation:the Ensemble Kalman filter[M]. New York:Springer-Verlag, 2009
    [14]
    Bust G S, Garner T W, Gaussiran T L. Ionospheric Data Assimilation Three-Dimensional (IDA3D):A Global, Multisensor, Electron Density Specification Algorithm[J]. Journal of Geophysical Research Atmospheres, 2004, 109(A11):379-401 doi: 10.1029/2003JA010234/pdf
    [15]
    Jin Rui, Jin Shuanggen, Feng Guiping, et al. M_DCB:MATLAB Code for Estimating GNSS Satellite and Receiver Differential Code Biases[J]. GPS Solut., 2012, doi: 10.1007/s10291-012-0279-3
  • Related Articles

    [1]MA Jingzhen, SUN Qun, WEN Bowei, ZHOU Zhao, LU Chuanwei, LÜ Zheng, SUN Shijie. A Hybrid Multi-feature Road Network Selection Method Based on Trajectory Data[J]. Geomatics and Information Science of Wuhan University, 2022, 47(7): 1009-1016. DOI: 10.13203/j.whugis20190480
    [2]YANG Hao, HE Zongyi, CHEN Huayang, ZHOU Zhuanxiang, FAN Yong. A Method for Automatic Generalization of Urban Settlements Considering Road Network[J]. Geomatics and Information Science of Wuhan University, 2018, 43(6): 965-970. DOI: 10.13203/j.whugis20160094
    [3]CAO Weiwei, ZHANG Hong, HE Jing, LAN Tian. Road Selection Considering Structural and Geometric Properties[J]. Geomatics and Information Science of Wuhan University, 2017, 42(4): 520-524. DOI: 10.13203/j.whugis20140862
    [4]YANG Lin, WAN Bo, WANG Run, ZUO Zejun, AN Xiaoya. Matching Road Network Based on the Structural Relationship Constraint of Hierarchical Strokes[J]. Geomatics and Information Science of Wuhan University, 2015, 40(12): 1661-1668. DOI: 10.13203/j.whugis20140295
    [5]tianjin g, renchan g, wangyihen g, xiongfu q uan, leiyin g zhe. imp rovementofself-best-fitstrate gyforstrokebuildin g[J]. Geomatics and Information Science of Wuhan University, 2015, 40(9): 1209-1214. DOI: 10.13203/j .whu g is20140455
    [6]LIU Hailong, QIAN Haizhong, WANG Xiao, HE Haiwei. Road Networks Global Matching Method Using Analytical Hierarchy Process[J]. Geomatics and Information Science of Wuhan University, 2015, 40(5): 644-651. DOI: 10.13203/j.whugis20130350
    [7]TIAN Jing, HE Qingsong, YAN Fen. Formalization and New Algorithm of stroke Generation in Road Networks[J]. Geomatics and Information Science of Wuhan University, 2014, 39(5): 556-560. DOI: 10.13203/j.whugis20120127
    [8]TIAN Jing, WU Dang, ZHAN Yifei. Degree Correlation of Urban Street Networks[J]. Geomatics and Information Science of Wuhan University, 2014, 39(3): 332-334. DOI: 10.13203/j.whugis20120675
    [9]CHEN Jun, HU Yungang, ZHAO Renliang, LI Zhilin. Road Data Updating Based on Map Generalization[J]. Geomatics and Information Science of Wuhan University, 2007, 32(11): 1022-1027.
    [10]HUANG Shuqiang, SUN Chengzhi, FU Zhongliang. License Plate Binarization Algorithm Based on the Features of Characters' Strokes[J]. Geomatics and Information Science of Wuhan University, 2003, 28(1): 71-73,79.
  • Cited by

    Periodical cited type(9)

    1. 赵天明,孙群,马京振,张付兵,温伯威. 融合路段和stroke特征的道路自动选取方法. 地球信息科学学报. 2024(12): 2673-2685 .
    2. 郭漩,钱海忠,王骁,刘俊楠,任琰,赵钰哲,陈国庆. 多源道路智能选取的本体知识推理方法. 测绘学报. 2022(02): 279-289 .
    3. 马京振,孙群,温伯威,周炤,陆川伟,吕峥,孙士杰. 结合轨迹数据的混合多特征道路网选取方法. 武汉大学学报(信息科学版). 2022(07): 1009-1016 .
    4. 朱余德,杨敏,晏雄锋. 利用图卷积神经网络的道路网选取方法. 北京测绘. 2022(11): 1455-1459 .
    5. 韩远,王中辉,徐智邦,余贝贝. 结合引力场理论的道路自动选取方法. 测绘科学. 2021(01): 189-195 .
    6. 韩远,王中辉,禄小敏. POI辅助下的道路选取. 测绘科学. 2021(04): 165-171 .
    7. 陈晓东,余劲松弟. 顾及语义关联信息的道路选取方法. 海南大学学报(自然科学版). 2021(03): 227-234 .
    8. 王晓妍. 土地利用图中线状要素综合的质量评价. 测绘通报. 2020(04): 116-120 .
    9. 冯云,朱素华,孙益清,王金鑫. 郑州轨道交通5号线开通对城市交通格局的影响. 城市勘测. 2020(04): 54-58 .

    Other cited types(11)

Catalog

    Article views PDF downloads Cited by(20)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return