XIE Yanxin, WU Xiaocheng, HU Xiong. Using One-Dimensional Variational Assimilation Algorithm to Obtain Atmospheric Refractive Index from Ground-Based GPS Phase Delay[J]. Geomatics and Information Science of Wuhan University, 2018, 43(7): 1042-1047. DOI: 10.13203/j.whugis20160238
Citation: XIE Yanxin, WU Xiaocheng, HU Xiong. Using One-Dimensional Variational Assimilation Algorithm to Obtain Atmospheric Refractive Index from Ground-Based GPS Phase Delay[J]. Geomatics and Information Science of Wuhan University, 2018, 43(7): 1042-1047. DOI: 10.13203/j.whugis20160238

Using One-Dimensional Variational Assimilation Algorithm to Obtain Atmospheric Refractive Index from Ground-Based GPS Phase Delay

Funds: 

The National Natural Science Foundation of China 41204137

More Information
  • Author Bio:

    XIE Yanxin, PhD, specializes in the theories and methods of variational data assimilation. E-mail: xieyanxin12@mails.ucas.ac.cn

  • Corresponding author:

    WU Xiaocheng, PhD, associate professor. E-mail:xcwu@nssc.ac.cn

  • Received Date: January 10, 2017
  • Published Date: July 04, 2018
  • GPS phase delay contains a lot of information that can be used to obtain atmospheric parameters with certain methods. Based on ground-based GPS phase delay, a one-dimensional variational (1DVAR) assimilation algorithm combined with an empirical model is proposed to obtain the atmospheric refractive index. The assimilation experiment is carried out by using simulated GPS phase delay data, and also verified with actual measured data. The influence of the background error settings on the result of assimilation is discussed. The experimental result shows that the 1DVAR assimilation algorithm can get high-precision atmospheric refractive index in 0-60 km height. The background error settings of the lower layers can affect the assimilation result in the whole height range. The atmospheric refractive index obtained from the assimilation experiment is used to correct the radio wave refraction, and the result is very good, which can reach 1 mm scale correction accuracy.
  • [1]
    陈世范. GPS气象观测应用的研究进展与展望[J].气象学报, 1999, 57(2):242-252 doi: 10.11676/qxxb1999.023

    Chen Shifan. Advance and Prospect on Research of GPS Atmospheric Sounding and Its Application[J]. Journal of Meteorological Research, 1999, 57(2):242-252 doi: 10.11676/qxxb1999.023
    [2]
    毕研盟, 毛节泰, 刘晓阳, 等.应用地基GPS遥感倾斜路径方向大气水汽总量[J].地球物理学报, 2006, 49(2):335-342 http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_dqwlxb200602005

    Bi Yanmeng, Mao Jietai, Liu Xiaoyang, et al. Remote Sensing of the Amount of Water Vapor Along the Slant Path Using the Ground-Based GPS[J]. Chinese Journal of Geophysics, 2006, 49(2):335-342 http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_dqwlxb200602005
    [3]
    Choy S, Dawson J, Jia M, et al. Ground-Based GPS-Derived Precipitable Water Vapour Estimates for Climate Application in Australia[C]. EGU General Assembly Conference, Vienna, Austria, 2013
    [4]
    Lowry A R, Rocken C, Sokolovskiy S V, et al. Vertical Profiling of Atmospheric Refractivity from Ground-Based GPS[J]. Radio Science, 2002, 37(3):1-19 doi: 10.1029/2000RS002565/abstract
    [5]
    伍亦亦, 洪振杰, 郭鹏, 等.地基GPS低高度角观测反演大气折射率廓线的模拟仿真[J].地球物理学报, 2010, 53(5):1085-1090 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxb201005008

    Wu Yiyi, Hong Zhenjie, Guo Peng, et al. Simulation of Atmospheric Refractive Profile Retrieving from Low-Elevation Ground-Based GPS Observation[J]. Chinese Journal of Geophysics, 2010, 53(5):1085-1090 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxb201005008
    [6]
    曹云昌, 胡雄, 符养, 等.山基和地基GPS联合探测大气折射率廓线的试验研究[J].高技术通讯, 2008, 18(8):857-862 http://www.doc88.com/p-6843995808788.html

    Cao Yunchang, Hu Xiong, Fu Yang, et al. Soun-ding Atmospheric Profiles by Mountain-Based and Ground-Based GPS[J]. High Technology Letters, 2008, 18(8):857-862 http://www.doc88.com/p-6843995808788.html
    [7]
    Wu X, Wang X, Lü D. Retrieval of Vertical Distribution of Tropospheric Refractivity Through Ground-Based GPS Observation[J]. Advances in Atmospheric Sciences, 2014, 31(1):37-47 doi: 10.1007/s00376-013-2215-z
    [8]
    Zuffada C, Hajj G A, Kursinski E R. A Novel Approach to Atmospheric Profiling with a Mountain-Based or Airborne GPS Receiver[J]. Journal of Geophysical Research:Atmospheres, 1999, 104(D20):24435-24447 doi: 10.1029/1999JD900766
    [9]
    胡雄, 张训械, 吴小成, 等.山基GPS掩星观测实验及其反演原理[J].地球物理学报, 2006, 49(1):22-27 http://www.irgrid.ac.cn/handle/1471x/841237?mode=full&submit_simple=Show+full+item+record

    Hu Xiong, Zhang Xunxie, Wu Xiaocheng, et al. Mountain-Based GPS Observations of Occultation and Its Inversion Theory[J]. Chinese Journal of Geophysics, 2006, 49(1):22-27 http://www.irgrid.ac.cn/handle/1471x/841237?mode=full&submit_simple=Show+full+item+record
    [10]
    龚建东, 赵刚.全球资料同化中误差协方差三维结构的准确估计与应用Ⅱ:背景误差协方差调整与数值试验分析[J].气象学报, 2006, 64(6):684-698 doi: 10.11676/qxxb2006.066

    Gong Jiandong, Zhao Gang. Accurate Estimation and Application of 3-D Error Covariance Structures in Global Data Assimilation Part Ⅱ:Background Error Covariance Structure Adjustments and Numerical Experiments[J]. Journal of Meteorological Research, 2006, 64(6):684-698 doi: 10.11676/qxxb2006.066
    [11]
    黄捷.电波大气折射误差修正[M].北京:国防工业出版社, 1999

    Huang Jie. Correction for Atmospheric Refractive Error of Radio Wave[M]. Beijing:National Defense Industry Press, 1999
    [12]
    吴小成, 胡雄, 宫晓艳.山基GPS掩星折射率与探空折射率比较[J].地球物理学进展, 2008, 23(4):1149-1155 http://www.cqvip.com/qk/98047X/200804/28232656.html

    Wu Xiaocheng, Hu Xiong, Gong Xiaoyan. Compari-son of Refractivity Obtained with Mountain-Based GPS Radio Occultation and Radiosonde[J]. Progress in Geophysics, 2008, 23(4):1149-1155 http://www.cqvip.com/qk/98047X/200804/28232656.html
    [13]
    宫晓艳, 胡雄, 吴小成, 等.雾灵山GPS掩星观测实验分析[J].应用气象学报, 2008, 19(2):180-187 doi: 10.11898/1001-7313.20080233

    Gong Xiaoyan, Hu Xiong, Wu Xiaocheng, et al. Mountain-Based GPS Occultation Observation Experiment at Mt Wuling[J]. Journal of Applied Meteorological Science, 2008, 19(2):180-187 doi: 10.11898/1001-7313.20080233
  • Related Articles

    [1]XU Xiaohua, ZHANG Jiman, LUO Jia, GAO Pan. Retrieval and Validation of FY-3C Radio Occultation Refractivities[J]. Geomatics and Information Science of Wuhan University, 2022, 47(1): 36-44. DOI: 10.13203/j.whugis20190361
    [2]ZHU Zhouzong, XU Xiaohua, LUO Jia. Inversion and Analysis of Atmospheric Boundary Layer Height Using FY-3C Radio Occultation Refractive Index Data[J]. Geomatics and Information Science of Wuhan University, 2021, 46(3): 395-401. DOI: 10.13203/j.whugis20190271
    [3]JIANG Peng, YE Shirong, HE Shujing, LIU Yanyan. Ground\|based GPS Tomography of Wet Refractivity with Adaptive Kalman Filter[J]. Geomatics and Information Science of Wuhan University, 2013, 38(3): 299-302.
    [4]XU Xiaohua, LUO Jia. Statistical Validation of COSMIC Radio Occultation Refractivity Profiles[J]. Geomatics and Information Science of Wuhan University, 2009, 34(2): 214-217.
    [5]ZHANG Shuangcheng, YE Shirong, WAN Rong, CHEN Bo. Preliminary Tomography Spatial Wet Refractivity Distribution Based on Kalman Filter[J]. Geomatics and Information Science of Wuhan University, 2008, 33(8): 796-799.
    [6]YIN Haitao, HUANG Dingfa, XIONG Yongliang, WANG Guiwen. New Model for Tropospheric Delay Estimation of GPS Signal[J]. Geomatics and Information Science of Wuhan University, 2007, 32(5): 454-457.
    [7]WU Yue, MENG Yang, WANG Zemin, XU Shaoquan. Triple-Frequency Methods for Correcting Higher-Order Ionospheric Refractive Error in GPS Modernization[J]. Geomatics and Information Science of Wuhan University, 2005, 30(7): 601-603.
    [8]Ge Huanan. Precision Calculation of Atmospheric Refraction[J]. Geomatics and Information Science of Wuhan University, 1998, 23(1): 88-91.
    [9]Yu Mozhi. A New Technique for Determining the High Refractive Index of Glass Microsphere[J]. Geomatics and Information Science of Wuhan University, 1994, 19(4): 371-373.
    [10]Yu Mozhi, Lin Yinsen, Zhong Sidong. A New Technique for Untouched Determining the Refractive Index of Lens with High Accuracy[J]. Geomatics and Information Science of Wuhan University, 1994, 19(2): 173-177.
  • Cited by

    Periodical cited type(13)

    1. 杨忠荣. 低成本车载RTK高精度定位方法. 地理空间信息. 2025(03): 96-100 .
    2. 程建华,陈思成,臧楠,程思翔,赵国晶,马子凡. 附加自适应短时高程变化率约束的PPP/INS紧组合增强模型. 测绘学报. 2024(09): 1761-1776 .
    3. 王勋,崔先强,高天杭. 动力学模型自适应滤波算法研究. 武汉大学学报(信息科学版). 2023(05): 741-748 .
    4. 张一,尹潇,宋海娜. 运动方向约束的自适应SRUKF目标跟踪算法. 导航定位学报. 2023(05): 53-59 .
    5. 李清泉,吕世望,陈智鹏,殷煜,张德津. 冬奥会国家速滑馆超大地坪平整度快速测量. 武汉大学学报(信息科学版). 2022(03): 325-333 .
    6. 辜声峰,戴春齐,何成鹏,方礼喆,王梓豪. 面向城市车载导航的多系统PPP-RTK/VIO半紧组合算法性能分析. 武汉大学学报(信息科学版). 2021(12): 1852-1861 .
    7. 陶晓晓,卢小平,路泽忠,周雨石,余振宝. WiFi融合环境光定位方法研究. 测绘科学. 2020(06): 57-61+72 .
    8. 张辰东,王兆瑞. 一种长隧道内高速列车实时高精度定位方法. 计算机仿真. 2020(09): 124-128+188 .
    9. 尹潇,柴洪洲,向民志,杜祯强. 附加运动学约束的BDS抗差UKF导航算法. 测绘学报. 2020(11): 1399-1406 .
    10. 王诒国,潘孝星. 基于马氏距离的抗差卡尔曼滤波算法在组合导航中的应用. 北京测绘. 2020(12): 1810-1814 .
    11. 吕大千,曾芳玲,欧阳晓凤,于合理. 时频传递的改进整数相位钟方法. 测绘学报. 2019(07): 889-897 .
    12. 邓中亮,尹露,唐诗浩,刘延旭,宋汶轩. 室内定位关键技术综述. 导航定位与授时. 2018(03): 14-23 .
    13. 张迪,施昆,李照永. 移动测量系统的GNSS/INS组合定位方法的对比研究. 软件. 2018(08): 110-116 .

    Other cited types(18)

Catalog

    Article views (1237) PDF downloads (204) Cited by(31)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return