WANG Pengxin, CHEN Chi, ZHANG Yue, ZHANG Shuyu, LIU Junming. Estimation of Winter Wheat Yield Using Assimilated Bi-variables and PCA-Copula Method[J]. Geomatics and Information Science of Wuhan University, 2022, 47(8): 1201-1212. DOI: 10.13203/j.whugis20220038
Citation: WANG Pengxin, CHEN Chi, ZHANG Yue, ZHANG Shuyu, LIU Junming. Estimation of Winter Wheat Yield Using Assimilated Bi-variables and PCA-Copula Method[J]. Geomatics and Information Science of Wuhan University, 2022, 47(8): 1201-1212. DOI: 10.13203/j.whugis20220038

Estimation of Winter Wheat Yield Using Assimilated Bi-variables and PCA-Copula Method

Funds: 

The National Natural Science Foundation of China 41871336

The National Natural Science Foundation of China 42171332

More Information
  • Author Bio:

    WANG Pengxin, PhD, professor, specializes in quantitative remote sensing and its application in agriculture. E-mail: wangpx@cau.edu.cn

  • Received Date: January 11, 2022
  • Available Online: August 15, 2022
  • Published Date: August 04, 2022
  •   Objectives  Accurate, timely and effective monitoring of the growth and yield of winter wheat over a large area can help optimize the wheat planting structure, adjust the regional layout and ensure the country's food security. Therefore, it is very important to further improve the estimation accuracy of winter wheat yield.
      Methods  Vegetation temperature condition index (VTCI) and leaf area index (LAI) at the main growth period of winter wheat, which were simulated by the CERES (crop environment resource synthesis)-Wheat model and retrieved from MODIS (moderate resolution imaging spectroradiometer) data, were assimilated by using ensemble Kalman filtering (EnKF) algorithm and particle filtering (PF) algorithm. In addition, the principal component analysis combined with the Copula function was used to develop univariate (VTCI or LAI) and bi-variate (VTCI and LAI) winter wheat yield estimation models, and the optimal model was selected to estimate winter wheat yields from 2017 to 2020.
      Results  The experimental results show that, at the sampling-sites scale, both VTCI and LAI after assimilated can comprehensively reflect the variation characteristics of MODIS observed and model simulated values, and the application of PF algorithm has a better assimilation effect. At the regional scale, the bivariate yield estimation model developed by using PF algorithm has the highest accuracy. Compared with the accuracy of the models constructed by VTCI and LAI without assimilation, the root mean square error of the optimal assimilation model is reduced by 56.25 kg/hm2, and the average relative error is reduced by 1.51%.
      Conclusions  The above results indicate that the model can effectively improve the accuracy of winter wheat yield estimation and has good applicability for large area yield estimation.
  • [1]
    Lobell D B, Asner G P, Ortiz-Monasterio J I, et al. Remote Sensing of Regional Crop Production in the Yaqui Valley, Mexico: Estimates and Uncertainties[J]. Agriculture, Ecosystems & Environment, 2003, 94(2): 205-220
    [2]
    任建强, 陈仲新, 唐华俊, 等. 基于遥感信息与作物生长模型的区域作物单产模拟[J]. 农业工程学报, 2011, 27(8): 257-264 doi: 10.3969/j.issn.1002-6819.2011.08.045

    Ren Jianqiang, Chen Zhongxin, Tang Huajun, et al. Regional Crop Yield Simulation Based on Crop Growth Model and Remote Sensing Data[J]. Transactions of the Chinese Society of Agricultural Engineering, 2011, 27(8): 257-264 doi: 10.3969/j.issn.1002-6819.2011.08.045
    [3]
    赵春江. 农业遥感研究与应用进展[J]. 农业机械学报, 2014, 45(12): 277-293 doi: 10.6041/j.issn.1000-1298.2014.12.041

    Zhao Chunjiang. Advances of Research and Application in Remote Sensing for Agriculture[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(12): 277-293 doi: 10.6041/j.issn.1000-1298.2014.12.041
    [4]
    Wagner M P, Slawig T, Taravat A, et al. Remote Sensing Data Assimilation in Dynamic Crop Models Using Particle Swarm Optimization[J]. ISPRS International Journal of Geo-Information, 2020, 9(2): 105 doi: 10.3390/ijgi9020105
    [5]
    Bai T C, Wang S G, Meng W B, et al. Assimilation of Remotely-Sensed LAI into WOFOST Model with the SUBPLEX Algorithm for Improving the Field-Scale Jujube Yield Forecasts[J]. Remote Sensing, 2019, 11(16): 1945 doi: 10.3390/rs11161945
    [6]
    刘雅婷, 龚龑, 段博, 等. 多时相NDVI与丰度综合分析的油菜无人机遥感长势监测[J]. 武汉大学学报·信息科学版, 2020, 45(2): 265-272 doi: 10.13203/j.whugis20180161

    Liu Yating, Gong Yan, Duan Bo, et al. Combining Multi-temporal NDVI and Abundance from UAV Remote Sensing Data for Oilseed Rape Growth Monitoring[J]. Geomatics and Information Science of Wuhan University, 2020, 45(2): 265-272 doi: 10.13203/j.whugis20180161
    [7]
    de Wit A, Duveiller G, Defourny P. Estimating Regional Winter Wheat Yield with WOFOST Through the Assimilation of Green Area Index Retrieved from MODIS Observations[J]. Agricultural and Forest Meteorology, 2012, 164: 39-52 doi: 10.1016/j.agrformet.2012.04.011
    [8]
    Huang J X, Gómez-Dans J L, Huang H, et al. Assimilation of Remote Sensing into Crop Growth Models: Current Status and Perspectives[J]. Agricultural and Forest Meteorology, 2019, 276/277: 107609
    [9]
    Mathieu P P, O'Neill A. Data Assimilation: From Photon Counts to Earth System Forecasts[J]. Remote Sensing of Environment, 2008, 112(4): 1258-1267 doi: 10.1016/j.rse.2007.02.040
    [10]
    Chen Y, Tao F L. Improving the Practicability of Remote Sensing Data-Assimilation-Based Crop Yield Estimations over a Large Area Using a Spatial Assimilation Algorithm and Ensemble Assimilation Strategies[J]. Agricultural and Forest Meteorology, 2020, 291: 108082 doi: 10.1016/j.agrformet.2020.108082
    [11]
    Ines A V M, Das N N, Hansen J W, et al. Assimilation of Remotely Sensed Soil Moisture and Vegetation with a Crop Simulation Model for Maize Yield Prediction[J]. Remote Sensing of Environment, 2013, 138: 149-164 doi: 10.1016/j.rse.2013.07.018
    [12]
    Pan H Z, Chen Z X, Allard D W, et al. Joint Assimilation of Leaf Area Index and Soil Moisture from Sentinel-1 and Sentinel-2 Data into the WOFOST Model for Winter Wheat Yield Estimation[J]. Sensors(Basel, Switzerland), 2019, 19(14): 3161 doi: 10.3390/s19143161
    [13]
    王鹏新, 龚健雅, 李小文. 条件植被温度指数及其在干旱监测中的应用[J]. 武汉大学学报·信息科学版, 2001, 26(5): 412-418 http://ch.whu.edu.cn/article/id/5205

    Wang Pengxin, Gong Jianya, Li Xiaowen. Vegetation-Temperature Condition Index and Its Application for Drought Monitoring[J]. Geomatics and Information Science of Wuhan University, 2001, 26(5): 412-418 http://ch.whu.edu.cn/article/id/5205
    [14]
    Xie Y, Wang P X, Bai X J, et al. Assimilation of the Leaf Area Index and Vegetation Temperature Condition Index for Winter Wheat Yield Estimation Using Landsat Imagery and the CERES-Wheat Model[J]. Agricultural and Forest Meteorology, 2017, 246: 194-206 doi: 10.1016/j.agrformet.2017.06.015
    [15]
    AghaKouchak A, Cheng L Y, Mazdiyasni O, et al. Global Warming and Changes in Risk of Concurrent Climate Extremes: Insights from the 2014 California Drought[J]. Geophysical Research Letters, 2014, 41(24): 8847-8852 doi: 10.1002/2014GL062308
    [16]
    李浩鑫, 邵东国, 尹希, 等. 基于主成分分析和Copula函数的灌溉用水效率评价方法[J]. 农业工程学报, 2015, 31(11): 96-102 doi: 10.11975/j.issn.1002-6819.2015.11.014

    Li Haoxin, Shao Dongguo, Yin Xi, et al. Evaluation Method for Irrigation-Water Use Efficiency Based on Principle Component Analysis and Copula Function[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(11): 96-102 doi: 10.11975/j.issn.1002-6819.2015.11.014
    [17]
    王鹏新, 冯明悦, 孙辉涛, 等. 基于主成分分析和Copula函数的干旱影响评估研究[J]. 农业机械学报, 2016, 47(9): 334-340 https://www.cnki.com.cn/Article/CJFDTOTAL-NYJX201609045.htm

    Wang Pengxin, Feng Mingyue, Sun Huitao, et al. Drought Impact Assessment Based on Principal Component Analysis and Copula Function[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(9): 334-340 https://www.cnki.com.cn/Article/CJFDTOTAL-NYJX201609045.htm
    [18]
    李艳, 王鹏新, 刘峻明, 等. 基于条件植被温度指数的冬小麦主要生育时期干旱监测效果评价Ⅲ: 干旱对冬小麦产量的影响评估[J]. 干旱地区农业研究, 2014, 32(5): 218-222 https://www.cnki.com.cn/Article/CJFDTOTAL-GHDQ201405038.htm

    Li Yan, Wang Pengxin, Liu Junming, et al. Evaluation of Drought Monitoring Effects in the Main Growth and Development Stages of Winter Wheat Using Vegetation Temperature Condition Index Ⅲ—Impact Evaluation of Drought on Wheat Yield[J]. Agricultural Research in the Arid Areas, 2014, 32(5): 218-222 https://www.cnki.com.cn/Article/CJFDTOTAL-GHDQ201405038.htm
    [19]
    孙威, 王鹏新, 韩丽娟, 等. 条件植被温度指数干旱监测方法的完善[J]. 农业工程学报, 2006, 22(2): 22-26 doi: 10.3321/j.issn:1002-6819.2006.02.006

    Sun Wei, Wang Pengxin, Han Lijuan, et al. Further Improvement of the Approach to Monitoring Drought Using Vegetation and Temperature Condition Indexes from Multi-Years Remotely Sensed Data[J]. Transactions of the Chinese Society of Agricultural Engineering, 2006, 22(2): 22-26 doi: 10.3321/j.issn:1002-6819.2006.02.006
    [20]
    王鹏新, 荀兰, 李俐, 等. 基于时间序列叶面积指数傅里叶变换的作物种植区域提取[J]. 农业工程学报, 2017, 33(21): 207-215 doi: 10.11975/j.issn.1002-6819.2017.21.025

    Wang Pengxin, Xun Lan, Li Li, et al. Extraction of Planting Areas of Main Crops Based on Fourier Transformed Characteristics of Time Series Leaf Area Index Products[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(21): 207-215 doi: 10.11975/j.issn.1002-6819.2017.21.025
    [21]
    Jones J W, Hoogenboom G, Porter C H, et al. The DSSAT Cropping System Model[J]. European Journal of Agronomy, 2003, 18(3/4): 235-265
    [22]
    解毅, 王鹏新, 王蕾, 等. 基于作物及遥感同化模型的小麦产量估测[J]. 农业工程学报, 2016, 32(20): 179-186 doi: 10.11975/j.issn.1002-6819.2016.20.023

    Xie Yi, Wang Pengxin, Wang Lei, et al. Estimation of Wheat Yield Based on Crop and Remote Sensing Assimilation Models[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(20): 179-186 doi: 10.11975/j.issn.1002-6819.2016.20.023
    [23]
    王维, 刘翔舸, 王鹏新, 等. 条件植被温度指数的四维变分与集合卡尔曼同化方法[J]. 农业工程学报, 2011, 27(12): 184-190 doi: 10.3969/j.issn.1002-6819.2011.12.035

    Wang Wei, Liu Xiangge, Wang Pengxin, et al. Application of 4DVAR and EnKF Approaches for Assimilating Vegetation Temperature Condition Index[J]. Transactions of the Chinese Society of Agricultural Engineering, 2011, 27(12): 184-190 doi: 10.3969/j.issn.1002-6819.2011.12.035
    [24]
    张显峰, 赵杰鹏. 干旱区土壤水分遥感反演与同化模拟系统研究[J]. 武汉大学学报·信息科学版, 2012, 37(7): 794-799 http://ch.whu.edu.cn/article/id/254

    Zhang Xianfeng, Zhao Jiepeng. System for Soil Moisture Retrieval and Data Assimilation from Remotely Sensed Data in Arid Regions[J]. Geomatics and Information Science of Wuhan University, 2012, 37(7): 794-799 http://ch.whu.edu.cn/article/id/254
    [25]
    Bi H Y, Ma J W, Wang F J. An Improved Particle Filter Algorithm Based on Ensemble Kalman Filter and Markov Chain Monte Carlo Method[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(2): 447-459 doi: 10.1109/JSTARS.2014.2322096
    [26]
    Xu L, Abbaszadeh P, Moradkhani H, et al. Conti nental Drought Monitoring Using Satellite Soil Moisture, Data Assimilation and an Integrated Drought Index[J]. Remote Sensing of Environment, 2020, 250: 112028 doi: 10.1016/j.rse.2020.112028
    [27]
    郭新, 王乃江, 张玲玲, 等. 基于Google Earth Engine平台的关中冬小麦面积时空变化监测[J]. 干旱地区农业研究, 2020, 38(3): 275-280 https://www.cnki.com.cn/Article/CJFDTOTAL-GHDQ202003037.htm

    Guo Xin, Wang Naijiang, Zhang Lingling, et al. Monitoring of Spatial-Temporal Change of Winter Wheat Area in Guanzhong Region Based on Google Earth Engine[J]. Agricultural Research in the Arid Areas, 2020, 38(3): 275-280 https://www.cnki.com.cn/Article/CJFDTOTAL-GHDQ202003037.htm
    [28]
    王鹏新, 陈弛, 张树誉, 等. 基于LAI和VTCI及Copula函数的冬小麦单产估测[J]. 农业机械学报, 2021, 52(10): 255-263 doi: 10.6041/j.issn.1000-1298.2021.10.026

    Wang Pengxin, Chen Chi, Zhang Shuyu, et al. Winter Wheat Yield Estimation Based on Copula Function and Remotely Sensed LAI and VTCI[J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(10): 255-263 doi: 10.6041/j.issn.1000-1298.2021.10.026
    [29]
    Houtekamer P L, Mitchell H L. Data Assimilation Using an Ensemble Kalman Filter Technique[J]. Monthly Weather Review, 1998, 126(3): 796-811 doi: 10.1175/1520-0493(1998)126<0796:DAUAEK>2.0.CO;2
    [30]
    韩培, 舒红, 许剑辉. 顺序数据同化算法的敏感性分析[J]. 测绘科学技术学报, 2015, 32(5): 483-488 doi: 10.3969/j.issn.1673-6338.2015.05.010

    Han Pei, Shu Hong, Xu Jianhui. Sensitivity Analysis of the Sequential Data Assimilation Methods[J]. Journal of Geomatics Science and Technology, 2015, 32(5): 483-488 doi: 10.3969/j.issn.1673-6338.2015.05.010
    [31]
    Djuric P M, Vemula M, Bugallo M F. Target Tracking by Particle Filtering in Binary Sensor Networks[J]. IEEE Transactions on Signal Processing, 2008, 56(6): 2229-2238 doi: 10.1109/TSP.2007.916140
    [32]
    Ito K, Xiong K. Gaussian Filters for Nonlinear Filtering Problems[J]. IEEE Transactions on Automatic Control, 2000, 45(5): 910-927 doi: 10.1109/9.855552
    [33]
    王鹏新, 冯明悦, 梅树立, 等. 条件植被温度指数的多尺度特性分析与应用[J]. 武汉大学学报·信息科学版, 2018, 43(6): 915-921 doi: 10.13203/j.whugis20160105

    Wang Pengxin, Feng Mingyue, Mei Shuli, et al. Analysis and Application of the Multi-Scale Characteristics of Vegetation Temperature Condition Index[J]. Geomatics and Information Science of Wuhan University, 2018, 43(6): 915-921 doi: 10.13203/j.whugis20160105
  • Related Articles

    [1]GAO Xianjun, RAN Shuhao, ZHANG Guangbin, YANG Yuanwei. Building Extraction Based on Multi-feature Fusion and Object-Boundary Joint Constraint Network[J]. Geomatics and Information Science of Wuhan University, 2024, 49(3): 355-365. DOI: 10.13203/j.whugis20210520
    [2]ZENG Anmin, MING Feng, WU Fumei. Fusion Model for Long-Term Solutions to the Terrestrial Reference Frame Using Internal Constraints[J]. Geomatics and Information Science of Wuhan University, 2022, 47(9): 1447-1451. DOI: 10.13203/j.whugis20190453
    [3]LI Weilian, ZHU Jun, ZHANG Yunhao, FU Lin, HU Ya, YIN Lingzhi, DAI Yi. A Fusion Modeling and Interaction Method with Spatial Semantic Constraint for Debris Flow VR Scene[J]. Geomatics and Information Science of Wuhan University, 2020, 45(7): 1073-1081. DOI: 10.13203/j.whugis20180329
    [4]XIE Xuemei, SONG Yingchun, XIA Yuguo. An Active Set Algorithm of Conjugate Gradients for Adjustment Model with Interval Constraints[J]. Geomatics and Information Science of Wuhan University, 2019, 44(9): 1274-1281. DOI: 10.13203/j.whugis20170325
    [5]FAN Yaxin, ZHU Xinyan, GUO Wei, SHE Bing. Boundary-Constrained Max-p-Regions Problem and Its Heuristic Algorithm[J]. Geomatics and Information Science of Wuhan University, 2019, 44(6): 859-865. DOI: 10.13203/j.whugis20170253
    [6]XIE Xuemei, SONG Yingchun, XIAO Zhaobing. A Fast Search Algorithm in Adjustment Model with Inequality Constraint[J]. Geomatics and Information Science of Wuhan University, 2018, 43(9): 1349-1354. DOI: 10.13203/j.whugis20160435
    [7]YANG Yuanxi, ZENG Anmin, JING Yifan. GNSS Data Fusion with Functional and Stochastic ModelConstraints as well as Property Analysis[J]. Geomatics and Information Science of Wuhan University, 2014, 39(2): 127-131. DOI: 10.13203/j.whugis20130378
    [8]ZHU Qing, LI Haifeng, YANG Xiaoxia. Hierarchical Semantic Constraint Model for Focused Remote Sensing Information Services[J]. Geomatics and Information Science of Wuhan University, 2009, 34(12): 1454-1457.
    [9]ZENG Anmin, YANG Yuanxi, OUYANG Guichong. Sequential Adjustment with Constraints Among Parameters[J]. Geomatics and Information Science of Wuhan University, 2008, 33(2): 183-186.
    [10]ZHONG Min, YAN Haoming, ZHU Yaozhong, YU Yongqiang. Global Ocean Angular Momentum Variability and Geodetic Constraint[J]. Geomatics and Information Science of Wuhan University, 2003, 28(6): 697-702.
  • Cited by

    Periodical cited type(1)

    1. 任亚飞,郑玉丽,姚雷博. 基于图像识别的淬火过程中钢球计数研究. 拖拉机与农用运输车. 2021(06): 52-54+58 .

    Other cited types(3)

Catalog

    Article views PDF downloads Cited by(4)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return