LI Jingzhong, ZHANG Jinming. A Morphing Method for Smooth Area Features Based on Fourier Transform[J]. Geomatics and Information Science of Wuhan University, 2017, 42(8): 1104-1109. DOI: 10.13203/j.whugis20150157
Citation: LI Jingzhong, ZHANG Jinming. A Morphing Method for Smooth Area Features Based on Fourier Transform[J]. Geomatics and Information Science of Wuhan University, 2017, 42(8): 1104-1109. DOI: 10.13203/j.whugis20150157

A Morphing Method for Smooth Area Features Based on Fourier Transform

Funds: 

The National Natural Science Foundation of China 41001229

The National Natural Science Foundation of China 41671448

the High-tech R & D Program of China(863 Program) 2012AA12A404

the Virtual Geographic Environment, Ministry of Education Key Laboratory of Funded Projects 2012VGE03

the National Science Talents Fund "Geographical Sciences, Wuhan University of Science Base" Research Capacity Training Program J1103409

the Key Laboratory of Satellite Mapping Technology and Application, National Administration of Surveying, Mapping and Geoinformation KLSMTA-201308

More Information
  • Author Bio:

    LI Jingzhong, PhD, associate professor, specializes in the DEM analysis and multiple representations of spatial data. E-mail: lilideyx@126.com

  • Received Date: June 21, 2015
  • Published Date: August 04, 2017
  • A Fourier transform based morphing of smooth area features is presented in this paper. For the two vector representations of the same feature on the source and destination scales, their shape descriptions of coordinate string on space domain are converted to the description by mathematical function on frequency domain based on Fourier transform. Then the function at intermediate scale is calculated by the weighted mixed on the source and destination function, and the shape in vector at intermediate scale is restructured by inverse Fourier transform. The experiments show that the Morphing method of smooth area feature can preserve the original area feature's geometry characteristics and get smooth and continuous multi-scale representations of vector polygon.
  • [1]
    李华, 朱光喜, 朱耀庭.物体渐变技术现状与发展[J].中国图象图形学报A辑, 2002, 7A(8):745-751 http://www.cnki.com.cn/Article/CJFDTOTAL-ZGTB200208000.htm

    Li Hua, Zhu Guangxi, Zhu Yaoting. A Survey of Object Metamorphosis[J]. Journal of Image and Graphics, 2002, 7A(8):745-751 http://www.cnki.com.cn/Article/CJFDTOTAL-ZGTB200208000.htm
    [2]
    Sederberg T W, Greenwood E. A Physically B-ased Approach to 3d Shape Blending[J]. Computer Graphics, 1992, 26(2):25-34 doi: 10.1145/142920
    [3]
    Huttenlocher D P, Klanderman G A, Rucklidge W J. Comparing Images Using the Hausdorff Distance[J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 1993, 15(9):850-863 doi: 10.1109/34.232073
    [4]
    Van Oostrum R, Veltkamp R C. Parametric Search Made Practical[J]. Computational Geometry:Theory and Applications, 2004, 28:75-88 doi: 10.1016/j.comgeo.2004.03.006
    [5]
    Sederberg T, Gao P, Wang G, et al.2-D Shape Blending:An Intrinsic Solution to the Vertex Path Problem[J]. Comput Graph, 1993, 27:15-18 doi: 10.1145/157339
    [6]
    Shapira M, Rappoport A. Shape Blending Using the Star-Skeleton Representation[J]. IEEE Computer Graphics and Application, 1995, 15(2):44-51 doi: 10.1109/38.365005
    [7]
    Surazhsky V, Gotsman C.Guaranteed Intersection-free Polygon Morphing[J]. Computers and Graphics, 2001, 25(1):67-75 doi: 10.1016/S0097-8493(00)00108-4
    [8]
    艾廷华, 李精忠.尺度空间中GIS数据表达的生命期模型[J].武汉大学学报·信息科学版, 2010, 35(7):757-762, 781 http://ch.whu.edu.cn/CN/abstract/abstract996.shtml

    Ai Tinghua, Li Jingzhong. The Lifespan Model of GIS Data Representation over Scale Space[J].Geomatics and Information Science of Wuhan University, 2010, 35(7):757-762, 781 http://ch.whu.edu.cn/CN/abstract/abstract996.shtml
    [9]
    Cecconi A, Galanda M. Adaptive Zooming in Web Cartography[J]. Computer Graphics Forum, 2002, 21(4):787-799 doi: 10.1111/cgf.2002.21.issue-4
    [10]
    Noellenburg M, Merrick D, Wolff A, et al. Morphing Polylines:A Step Towards Continuous Generalization[J]. Computers, Environment and Urban Systems, 2008, 32(4):248-260 doi: 10.1016/j.compenvurbsys.2008.06.004
    [11]
    Albrecht S. A Solution to the Vertex Correspondence Problem in 2D Polygon Morphing[D]. Osnabruck:Universitat Osnabruck, 2006
    [12]
    彭东亮, 邓敏, 徐枫, 等.顾及BLG树结构特征的线状要素Morphing变换方法[J].武汉大学学报·信息科学版, 2012, 37(9):1120-1125 http://ch.whu.edu.cn/CN/abstract/abstract330.shtml

    Peng Dongliang, Deng Min, Xu Feng, et al. Morphing Linear Features Considering Their BLG-Tree Structures[J]. Geomatics and Information Science of Wuhan University, 2012, 37(9):1120-1125 http://ch.whu.edu.cn/CN/abstract/abstract330.shtml
    [13]
    李精忠, 吴晨琛, 杨泽龙, 等.一种利用模拟退火思想的线状要素Morphing方法[J].武汉大学学报·信息科学版, 2014, 39(12):1446-1451 http://ch.whu.edu.cn/CN/abstract/abstract3139.shtml

    Li Jingzhong, Wu Chenchen, Yang Zelong, et al.A Morphing Method for Linear Features Based on Simulated Annealing[J]. Geomatics and Information Science of Wuhan University, 2014, 39(12):1446-1451 http://ch.whu.edu.cn/CN/abstract/abstract3139.shtml
    [14]
    彭东亮, 邓敏, 刘慧敏.更充分利用独立弯曲结构的线状要素Morphing变换方法[J].测绘学报, 2014(6):637-644, 652 http://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201406014.htm

    Peng Dongliang, Deng Min, Liu Huimin. Morphing Transformation of Linear Features by Using Independent Bend Structures More Sufficiently[J]. Acta Geodaetica et Cartographica Sinica, 2014 (6):637-644, 652 http://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201406014.htm
    [15]
    翟仁健, 武芳, 朱丽, 等.曲线形态结构化表达[J].测绘学报, 2009, 38(2):175-182 http://www.cnki.com.cn/Article/CJFDTOTAL-CHXB200902020.htm

    Zhai Renjian, Wu Fang, Zhu Li, et al. Structured Representation of Curve Shape[J].Acta Geodaetica et Cartographica Sinica, 2009, 38(2):175-182 http://www.cnki.com.cn/Article/CJFDTOTAL-CHXB200902020.htm
    [16]
    艾廷华, 郭仁忠, 刘耀林.曲线弯曲深度层次结构的二叉树表达[J].测绘学报, 2001, 30(4):343-348 http://www.cnki.com.cn/Article/CJFDTOTAL-CHXB200104015.htm

    Ai Tinghua, Guo Renzhong, Liu Yaolin. A Binary Tree Representation of Curve Hierarchical Structure in Depth[J]. Acta Geodaetica et Cartographica Sinica, 2001, 30(4):343-348 http://www.cnki.com.cn/Article/CJFDTOTAL-CHXB200104015.htm
    [17]
    Persoon E, Fu K S. Shape Discrimination Using Fourier Descriptors[J].IEEE Trans. on Systems, Man and Cybernetics, 1997, SMC-7:170-179 http://ieeexplore.ieee.org/document/4309681/
    [18]
    黄文骞.数字地图符号的形状描述与识别[J].测绘学报, 1999, 28:233-238 doi: 10.3321/j.issn:1001-1595.1999.03.009

    Huang Wenqian. Shape Description and Recognition of Digital Map Symbols[J]. Acta Geodaetica et Cartographica Sinica, 1999, 28:233-238 doi: 10.3321/j.issn:1001-1595.1999.03.009
    [19]
    Ai Tinghua, Cheng Xiaoqiang, Liu Pengcheng, et al. A Shape Analysis and Template Matching of Building Features by the Fourier Transform Method[J]. Computers Environment and Urban Systems, 2013, 41:219-233 doi: 10.1016/j.compenvurbsys.2013.07.002

Catalog

    Article views PDF downloads Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return