Citation: | ZHAO Binbin, XIE Jianxiang, ZHANG Hongkui, WANG Liwei, WANG Qian. Geographic Line Extraction Algorithm Based on Morphing Transformation Techniques[J]. Geomatics and Information Science of Wuhan University, 2025, 50(1): 174-183. DOI: 10.13203/j.whugis20220493 |
Obtaining valley (ridge) lines from contour data has important practical significance and high production value for terrain analysis, slope aspect calculation and reservoir area designing. In view of the fact that current contour-oriented geographic lines extraction mostly adopts feature point direct-connecting method, and the extracted geographic lines are prone to spatial logical conflicts with contour lines. Meantime, in areas where the contour lines are more curved and more complex, the extracted valley (ridge) line does not conform to the bending characteristics of contour lines, and even deviates dramatically in certain local areas.
Therefore, after overall shape and local shape characteristics of the contour line are analyzed sufficiently based on Tobler's first law, a novel methodology of extracting geographic lines from contour data based on Morphing transformation techniques is proposed, which takes the contour line on both sides of a valley (ridge) into consideration, as well as constraint of feature points’ location. First, a contour tree is constructed based on the elevation and hierarchical relationship of contours, and the contour curve segmentation is carried out according to the concave and convex attributes of nodes on the contour line. Then, the terrain feature points are extracted efficiently and accurately. Second, each contour line is split into two parts with the terrain feature points, whereafter, an optimal correspondence of the nodes on both parts of a contour line are computed. Third, with respect to the constraints of terrain feature points, the geographic lines are extracted by performing Morphing transformation with a gradient shifting distance value.
The experimental results show that the methodology extracts complete geographic lines accurately, which are consistent with the actual terrain and take into account the overall shape and trend of contour lines.
The geographic lines extraction based on Morphing transformation techniques method can take into account the overall shape and trend of contour lines and unique shape at feature points to extract complete geographic lines consistent with the actual terrain, and it is robust. When the local terrain changes are complex, the contour shape is also complex. At this time, the allocation of Morphing transformation value for parameter
[1] |
LI M, WU T, LI W T, et al. Terrain Skeleton Construction and Analysis in Loess Plateau of Northern Shaanxi[J]. ISPRS International Journal of Geo-Information, 2022, 11(2): 136.
|
[2] |
米晓新, 杨必胜, 董震. 车载激光点云道路场景可视域快速计算与应用[J]. 武汉大学学报(信息科学版), 2020, 45(2): 258-264.
MI Xiaoxin, YANG Bisheng, DONG Zhen. Fast Visibility Analysis and Application in Road Environment with Mobile Laser Scanning Data[J]. Geomatics and Information Science of Wuhan University, 2020, 45(2): 258-264.
|
[3] |
邹昆, 沃焱, 徐翔. 利用特征显著度提取地形特征线的方法[J]. 武汉大学学报(信息科学版), 2018, 43(3): 342-348.
ZOU Kun, Yan WO, XU Xiang. A Feature Significance-Based Method to Extract Terrain Feature Lines[J]. Geomatics and Information Science of Wuhan University, 2018, 43(3): 342-348.
|
[4] |
孔月萍, 方莉, 江永林, 等. 提取地形特征线的形态学新方法[J]. 武汉大学学报(信息科学版), 2012, 37(8): 996-999.
KONG Yueping, FANG Li, JIANG Yonglin, et al. A New Method of Extracting Terrain Feature Lines by Morphology[J]. Geomatics and Information Science of Wuhan University, 2012, 37(8): 996-999.
|
[5] |
黄炅怡, 黄培之, 李坚强. 利用流水矢量提取山脊线和山谷线特征点的方法[J]. 测绘通报, 2020(10): 12-15.
HUANG Jiongyi, HUANG Peizhi, LI Jianqiang. Feature Point Extraction of Ridge Line and Valley Line from DEM Based on Falling Vector[J]. Bulletin of Surveying and Mapping, 2020(10): 12-15.
|
[6] |
王洪斌, 赵学胜, 张春亢, 等. 一种基于Morse复形的地形特征线构建改进算法[J]. 武汉大学学报(信息科学版), 2015, 40(9): 1220-1224.
WANG Hongbin, ZHAO Xuesheng, ZHANG Chunkang, et al. An Improved Algorithm of Constructing Terrain Feature Lines Based on Morse Complex[J]. Geomatics and Information Science of Wuhan University, 2015, 40(9): 1220-1224.
|
[7] |
汤国安. 我国数字高程模型与数字地形分析研究进展[J]. 地理学报, 2014, 69(9): 1305-1325.
TANG Guoan. Progress of DEM and Digital Terrain Analysis in China[J]. Acta Geographica Sinica, 2014, 69(9): 1305-1325.
|
[8] |
OLIVEIRA W A A, GULIATO D, DE OLIVEIRA D C B, et al. New Technique for Binary Morphological Shape-Based Interpolation[J].International Journal of Ima‑ge and Graphics, 2019, 19(2): 1950007.
|
[9] |
艾廷华, 祝国瑞, 张根寿. 基于Delaunay三角网模型的等高线地形特征提取及谷地树结构化组织[J]. 遥感学报, 2003, 7(4): 292-298.
AI Tinghua, ZHU Guorui, ZHANG Genshou. Extraction of Landform Features and Organization of Valley Tree Structure Based on Delaunay Triangulation Model[J]. Journal of Remote Sensing, 2003, 7(4): 292-298.
|
[10] |
郭庆胜, 杨族桥, 冯科. 基于等高线提取地形特征线的研究[J]. 武汉大学学报(信息科学版), 2008, 33(3): 253-256.
GUO Qingsheng, YANG Zuqiao, FENG Ke. Extracting Topographic Characteristic Line from Contours[J]. Geomatics and Information Science of Wuhan University, 2008, 33(3): 253-256.
|
[11] |
LI C M, GUO P P, WU P D, et al. Extraction of Terrain Feature Lines from Elevation Contours Using a Directed Adjacent Relation Tree[J].ISPRS International Journal of Geo-Information,2018,7(5): 163.
|
[12] |
熊汉江, 李秀娟. 一种提取山脊线和山谷线的新方法[J]. 武汉大学学报(信息科学版), 2015, 40(4): 498-502.
XIONG Hanjiang, LI Xiujuan. A New Method to Extract Terrain Feature Lines[J]. Geomatics and Information Science of Wuhan University, 2015, 40(4): 498-502.
|
[13] |
李精忠, 艾廷华, 柯舒. DEM提取谷地线的有效汇水量阈值范围[J]. 武汉大学学报(信息科学版), 2012, 37(10): 1244-1247.
LI Jingzhong, AI Tinghua, KE Shu. Effective Flow Accumulation Threshold of Extracting Valley-Line from Grid-Based Digital Elevation Model[J]. Geomatics and Information Science of Wuhan University, 2012, 37(10): 1244-1247.
|
[14] |
CHENG L, GUO Q S, FEI L F, et al. Multi-criterion Methods to Extract Topographic Feature Lines from Contours on Different Topographic Gradients[J]. International Journal of Geographical Information Science, 2022, 36(8): 1629-1651.
|
[15] |
GARZÓN A, KAPELAN Z, LANGEVELD J, et al. Machine Learning-Based Surrogate Modeling for Urban Water Networks: Review and Future Research Directions[J]. Water Resources Research, 2022, 58(5): e2021wr031808.
|
[16] |
TOBLER W R. A Computer Movie Simulating Urban Growth in the Detroit Region[J]. Economic Geography, 1970, 46: 234.
|
[17] |
王荣, 闫浩文, 禄小敏. 多尺度等高线簇拓扑关系定量表达方法研究[J]. 武汉大学学报(信息科学版), 2022, 47(4): 579-588.
WANG Rong, YAN Haowen, LU Xiaomin. Topological Relations Quantitative Expression Method of Multi-scale Contour Cluster[J]. Geomatics and Information Science of Wuhan University, 2022, 47(4): 579-588.
|
[18] |
李秀娟, 郑先伟, 熊汉江. 离散曲线演化及等高线剖分山脊山谷线提取[J]. 测绘科学, 2015, 40(9): 107-110.
LI Xiujuan, ZHENG Xianwei, XIONG Hanjiang. A Method of Extracting Terrain Feature Lines Based on DCE and Contour Decomposition[J]. Science of Surveying and Mapping, 2015, 40(9): 107-110.
|
[19] |
王宁, 姚志宏. 基于不同算法等高线曲率的提取与分析[J]. 干旱区地理, 2020, 43(1): 144-152.
WANG Ning, YAO Zhihong. Extraction and Analysis of the Contour Curvature Based on Different Algorithms[J]. Arid Land Geography, 2020, 43(1): 144-152.
|
[20] |
杨族桥, 李洪省, 张青. 地形特征约束的等高线群渐进式简化方法[J]. 武汉大学学报(信息科学版), 2013, 38(4): 480-483.
YANG Zuqiao, LI Hongsheng, ZHANG Qing. Progressive Simplification Methods of Contour Line Group Constrained by Topographic Feature[J]. Geomatics and Information Science of Wuhan University, 2013, 38(4): 480-483.
|
[21] |
WOLBERG G. Image Morphing: A Survey[J]. The Visual Computer, 1998, 14(8): 360-372.
|
[22] |
NÖLLENBURG M,MERRICK D,WOLFF A, et al.Morphing Polylines:A Step Towards Continuous Generalization[J]. Computers, Environment and Urban Systems, 2008, 32(4): 248-260.
|
[23] |
LI Zhilin, WONG M. Animating Basic Operations for Digital Map Generalization with Morphing Techniques[J]. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences,2008,37(PartB2):637-642.
|
[24] |
赵彬彬, 戴涛, 王安. 基于OptCor算法的多比例尺线要素综合方法[J]. 长沙理工大学学报(自然科学版), 2020, 17(2): 92-98.
ZHAO Binbin, DAI Tao, WANG An. A Linear Feature Generalization Method in Multi-scale Maps Based on OptCor Algorithm[J]. Journal of Changsha University of Science & Technology (Natural Science), 2020, 17(2): 92-98.
|
[25] |
李精忠, 方文江. 顾及邻域结构的线状要素Morphing方法[J]. 武汉大学学报(信息科学版), 2018, 43(8): 1138-1143.
LI Jingzhong, FANG Wenjiang. Morphing Polylines by Preserving Local Neighborhood Structures[J]. Geomatics and Information Science of Wuhan University, 2018, 43(8): 1138-1143.
|
[26] |
赵彬彬, 彭东亮, 张山山, 等. 顾及空间关系约束的不同比例尺面目标不一致性同化处理[J]. 武汉大学学报(信息科学版), 2016, 41(7): 911-917.
ZHAO Binbin, PENG Dongliang, ZHANG Shanshan, et al. An Assimilation Method of Inconsistency Between Area Objects at Different Scales with Respect to Spatial Relation Constraints[J]. Geomatics and Information Science of Wuhan University, 2016, 41(7): 911-917.
|
[27] |
赵彬彬. 空间数据不一致性探测处理理论与方法[M]. 北京: 测绘出版社, 2020.
ZHAO Binbin. Theory and Methodology of Spatial Data Inconsistency Detecting and Processing[M]. Beijing: Sino Maps Press, 2020.
|
[28] |
XU Y,ZHAO M W, LU J, et al. Methods for the Construction of DEMs of Artificial Slopes Conside‑ring Morphological Features and Semantic Information[J]. Journal of Mountain Science, 2022, 19(2): 563-577.
|
[29] |
刘万增, 陈军, 邓喀中, 等. 数据库更新中河流与山谷线一致性检测[J].中国图象图形学报,2008,13(5): 1003-1008.
LIU Wanzeng, CHEN Jun, DENG Kazhong, et al. Detecting the Spatial Inconsistency Between the Updated Rivers and Valleys[J].Journal of Image and Graphics, 2008, 13(5): 1003-1008.
|
[1] | LI Zuo-lin, XIANG Long-gang, YU Lie-bing, WU Hua-yi, GUAN Xue-feng. Distributed Join Query Method for Large-Scale Spatial Data Streams[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20230040 |
[2] | WANG Yufeng, WANG Juan. Spatiotemporal Differentiation Structure Evolution of Population and Land in Zhejiang Urban Agglomeration[J]. Geomatics and Information Science of Wuhan University, 2022, 47(2): 280-286. DOI: 10.13203/j.whugis20200221 |
[3] | ZHANG Lin, LI Xi. Analysis on Disparity of Regional Development in Pakistan Under Perspective of Nighttime Light Remote Sensing[J]. Geomatics and Information Science of Wuhan University, 2022, 47(2): 269-279. DOI: 10.13203/j.whugis20210057 |
[4] | XU Huimin, HU Shougeng. Chinese City Size Evolution Under Perspective of Nighttime Light Remote Sensing[J]. Geomatics and Information Science of Wuhan University, 2021, 46(1): 40-49. DOI: 10.13203/j.whugis20190330 |
[5] | DENG Caiqun, LIU Zhaoli. A Two-Dimensional Spatial Distribution Model for the Positioning Random Error of GPS RTK[J]. Geomatics and Information Science of Wuhan University, 2018, 43(7): 1056-1062. DOI: 10.13203/j.whugis20160254 |
[6] | Chen Zhengsheng, Lv Zhiping, Cui Yang, Wang Yupu. Implementation of Distributed Computing with Large-Scale GLASS Data[J]. Geomatics and Information Science of Wuhan University, 2015, 40(3): 384-389. |
[7] | QIN Chengzhi, ZHU Axing, LI Baolin, PEI Tao. Taxonomy of Slope Positions and Quantification of Their Spatial Distribution Information[J]. Geomatics and Information Science of Wuhan University, 2009, 34(3): 374-377. |
[8] | XIAO Liping, MENG Hui, LI Deyi. Approach to Node Ranking in a Netwrok Based on Topology Potential[J]. Geomatics and Information Science of Wuhan University, 2008, 33(4): 379-383. |
[9] | Li Wenlan, James C. M. Li. The Effect Of Grain Size On Fracture Toughness[J]. Geomatics and Information Science of Wuhan University, 1991, 16(2): 79-91. |
[10] | XU Xiaojian, YE Lejia, KANG Zhizhong, JIANG Wenchen, LUAN Dong, ZHANG Dongya. The Identification of Secondary Craters based on the Distribution of Iron Element on Lunar Surface[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20200345 |