MIAO Shunxia, SUN Kaimin, HU Xiuqing, QU Jianhua, LIU Junyi. Capability Analysis of Lake Extent Monitoring in Highland Region from MERSI-II onboard FY-3D[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20220653
Citation: MIAO Shunxia, SUN Kaimin, HU Xiuqing, QU Jianhua, LIU Junyi. Capability Analysis of Lake Extent Monitoring in Highland Region from MERSI-II onboard FY-3D[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20220653

Capability Analysis of Lake Extent Monitoring in Highland Region from MERSI-II onboard FY-3D

More Information
  • Received Date: June 03, 2023
  • Available Online: July 02, 2023
  • Objectives: Lakes on the Tibetan Plateau are sensitive indicators of global climate change, and relevant studies on lakes are important for exploring the natural evolution of lakes and their interactions with climate. Since climate change, precipitation, glacial melt, and evaporation on the highland areas can easily cause abrupt changes in lake extent, both temporal and spatial resolution are frequently needed in the images used for dynamic monitoring of highland lakes. The Moderate Resolution Imager (MERSI-II) aboard domestic FengYun(FY) satellite provides extensive coverage every day, it has not yet been verified whether its 250 m image can be used for highland lake monitorin. Methods: By using the monitoring data from contemporaneous third-party datasets and Landsat-8 Operational Land Imager (OLI) as the true value in the lakes on the Tibetan Plateau, this paper analyzed the applicability of FY-3D MERSI-II data for plateau lake monitoring. Results: It was found that the average accuracy of MERSI-II images for lake area quantification accuracy reaches 95.12%, and the average lake boundary fitness reaches 91.21%. With the advantage of high-frequency monitoring, long time series of highly dynamic water monitoring applications can benefit from MERSI-II images. To further confirm the application potential of MERSIII data, the effects of improved spatial quality on increases in lake-wide monitoring capacity were analyzed. Compared to the initial results, the application performance of optimized MERSI-II data had significantly improved with an average lake area quantification accuracy of 2.62% and an average lake boundary fitness of 4.53%. For its spatial resolution hyper-segmentation potential and quantitative lake monitoring capability, FY-3D has good potential for high-frequency lake monitoring applications.
  • [1]
    LANG Qin, NIU Zhenguo, HONG Xiaoqi, YANG Xinying. Remote Sensing Monitoring and Change Analysis of Wetlands in the Tibetan Plateau[J]. Geomatics and Information Science of Wuhan University, 2021, 46(2):230-237(郎芹, 牛振国, 洪孝琪, 杨鑫莹. 青藏高原湿地遥感监测与变化分析[J]. 武汉大学学报(信息科学版), 2021, 46(2):230-237)
    [2]
    Zhang G, Yao T, Chen W, et al. Regional differences of lake evolution across China during 1960s-2015 and its natural and anthropogenic causes[J]. Remote sensing of environment, 2019, 221:386-404
    [3]
    Xinrui Wang, Rui Jin, Jian Lin, Xiangfei Zeng, Zebin Zhao. Automatic Algorithm for Extracting Lake Boundaries in Qinghai-Tibet Plateau based on Cloudy Landsat TM/OLI Image and DEM. Remote Sensing Technology and Application, 2020, 35(4):882-892(王鑫蕊, 晋锐, 林剑, 曾祥飞, 赵泽斌. 有云Landsat TM/OLI影像结合DEM提取青藏高原湖泊边界的自动算法研究[J]. 遥感技术与应用, 2020, 35(4):882-892)
    [4]
    Zhang G Q, Wang M M, Zhou T and Chen W F. Progress in remote sensing monitoring of lake area, water level, and volume changes on the Tibetan Plateau[J]. National Remote Sensing Bulletin, 2022, 26(1):115-125(张国庆,王蒙蒙,周陶,陈文锋.2022. 青藏高原湖泊面积、水位与水量变化遥感监测研究进展[J]. 遥感学报, 26(1):115-125)
    [5]
    Zhang B, Zhou W. Spatial-temporal characteristics of precipitation and its relationship with land use/cover change on the Qinghai-Tibet Plateau, China[J]. Land, 2021, 10(3):269
    [6]
    Jouberton Achille,Shaw Thomas E,Miles Evan,McCarthy Michael,Fugger Stefan,Ren Shaoting,Dehecq Amaury,Yang Wei,Pellicciotti Francesca. Warming-induced monsoon precipitation phase change intensifies glacier mass loss in the southeastern Tibetan Plateau.[J]. Proceedings of the National Academy of Sciences of the United States of America,2022,119(37)
    [7]
    Cao G, Hou P, Zheng Z, et al. New method and error analysis of lake retrieval with metOp-A AVHRR images on the Tibetan Plateau[J]. International Journal of Remote Sensing, 2016, 37(16):3547-3567
    [8]
    CHEN Chao, HE Xinyue, FU Jiaoqi, CHU Yanli. A Method of Flood Submerging Area Extraction for Farmland Based on Tasseled Cap Transformation from Remote Sensing Images[J]. Geomatics and Information Science of Wuhan University, 2019, 44(10):1560-1566(陈超, 何新月, 傅姣琪, 褚衍丽. 基于缨帽变换的农田洪水淹没范围遥感信息提取[J]. 武汉大学学报(信息科学版), 2019, 44(10):1560-1566)
    [9]
    Nan Y, Jianhui L, Wenbo M, et al. Water depth retrieval models of East Dongting Lake, China, using GF-1 multi-spectral remote sensing images[J]. Global Ecology and Conservation, 2020, 22:e01004
    [10]
    Zhang C, Lv A, Zhu W, et al. Using multisource satellite data to investigate lake area, water level, and water storage changes of terminal lakes in ungauged regions[J]. Remote Sensing, 2021, 13(16):3221
    [11]
    Zhang Z, Chang J, Xu C Y, et al. The response of lake area and vegetation cover variations to climate change over the Qinghai-Tibetan Plateau during the past 30 years[J]. Science of the Total Environment, 2018, 635:443-451
    [12]
    Zhang G, Chen W, Li G, et al. Lake water and glacier mass gains in the northwestern Tibetan Plateau observed from multi-sensor remote sensing data:Implication of an enhanced hydrological cycle[J]. Remote Sensing of Environment, 2020, 237:111554
    [13]
    Yao F, Wang J, Wang C, et al. Constructing longterm high-frequency time series of global lake and reservoir areas using Landsat imagery[J]. Remote Sensing of Environment, 2019, 232:111210
    [14]
    Zhang J, Hu Q, Li Y, et al. Area, lake-level and volume variations of typical lakes on the Tibetan Plateau and their response to climate change, 1972-2019[J]. Geo-spatial Information Science, 2021, 24(3):458-473
    [15]
    Duan H T, Cao Z G, Shen M, Ma J G and Qi T C. 2022. Review of lake remote sensing research[J]. National Remote Sensing Bulletin, 26(1):3-18(段洪涛,曹志刚,沈明,马金戈,齐天赐.2022. 湖泊遥感研究进展与展望. 遥感学报[J], 26(1):3-18)
    [16]
    Tao S, Fang J, Zhao X, et al. Rapid loss of lakes on the mongolian Plateau[J]. Proceedings of the National Academy of Sciences, 2015, 112(7):2281-2286
    [17]
    Jin S, Zhang M, Ma Y, et al. Adapting the dark target algorithm to advanced MERSI sensor on the FengYun-3-D satellite:Retrieval and Validation of Aerosol Optical Depth Over Land[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(10):8781-8797
    [18]
    Zhang G, Yao T, Xie H, et al. Response of Tibetan Plateau lakes to climate change:Trends, patterns, and mechanisms[J]. Earth-Science Reviews, 2020, 208:103269.
    [19]
    Zhang G, Xie H, Kang S, et al. monitoring lake level changes on the Tibetan Plateau using ICESat altimetry data (2003-2009)[J]. Remote Sensing of Environment,2011, 115(7):1733-1742
    [20]
    Zhang G, Luo W, Chen W, et al. A robust but variable lake expansion on the Tibetan Plateau[J]. Sci. Bull,2019, 64(18):1306-1309
    [21]
    Tang L, Duan X, Kong F, et al. Influences of climate change on area variation of Qinghai Lake on Qinghai-Tibetan Plateau since 1980s[J]. Scientific Reports, 2018, 8(1):1-7
    [22]
    Lian X-H, Qi Y, Wang H-W, et al. Assessing changes of water yield in Qinghai Lake Watershed of China[J]. Water, 2019, 12(1):11
    [23]
    Zhang, G. (2019). The lakes larger than 1km2 in Tibetan Plateau (V3.0) (1970s-2021). National Tibetan Plateau Data Center, DOI:10.11888/Hydro.tpdc.270303. CSTR:18406.11.Hydro.tpdc.270303(张国庆.青藏高原大于1平方公里湖泊数据集(V3.0)(1970s-2021):国家青藏高原科学数据中心, 2019)
    [24]
    Zhang G, Yao T, Xie H, et al. Lakes' state and abundance across the Tibetan Plateau[J]. Chinese Science Bulletin, 2014, 59(24):3010-3021
    [25]
    Kotchenova S Y, Vermote E F, matarrese R, et al. Validation of a vector version of the 6S radiative transfer code for atmospheric correction of satellite data. Part I:Path radiance[J]. Applied optics, 2006, 45(26):6762-6774
    [26]
    Kotchenova S Y, Vermote E F. Validation of a vector version of the 6S radiative transfer code for atmospheric correction of satellite data. Part II. Homogeneous Lambertian and anisotropic surfaces[J]. Applied optics, 2007, 46(20):4455-4464
    [27]
    Otsu N. A threshold selection method from graylevel histograms[J]. IEEE transactions on systems, man, and cybernetics, 1979, 9(1):62-66
    [28]
    Mcfeeters S K. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features[J]. International journal of remote sensing, 1996, 17(7):1425-1432
    [29]
    Xu Hanqiu. A study on information extraction of water body with the Modified Difference Water Index (MNDWI)[J]. National Remote Sensing Bulletin, 2005, 9(5):589-595. (徐涵秋. 利用改进的归一化差异水体指数(MNDWI)提取水体信息的研究[J]. 遥感学报, 2005, 9(5):589-595)
    [30]
    TANG Qiuhong, ZHANG Xuejun, QI Youcun, CHEN Shaohui, JIA Guoqiang, MU Mengfei, YANG Jie, YANG Qiquan, HUANG Xin, YUN Xiaobo, LIU Xingcai, HUANG Zhongwei, TANG Yin. Remote Sensing of the Terrestrial Water Cycle:Progress and Perspectives[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12):1872-1884(汤秋鸿, 张学君, 戚友存, 陈少辉, 贾国强, 穆梦斐, 杨杰, 杨其全, 黄昕, 运晓博, 刘星才, 黄忠伟, 唐寅. 遥感陆地水循环的进展与展望[J]. 武汉大学学报(信息科学版), 2018, 43(12):1872-1884)
    [31]
    HUANG Xuxing, YANG Yong, SHE Yuchen, JING Zhenhua, HU Xiuqing, GAO Xudong, LI Shuang. Analysis on geolocation error of FY-3D MERSI imaging[J]. Chinese Space Science and Technology, 2022, 42(4):8-18(黄旭星, 杨勇, 佘宇琛, 等. FY-3D中分辨率成像仪图像地理定位误差来源分析[J]. 中国空间科学技术, 2022, 42(4):8)
    [32]
    Min min, Bai Yu, Hu Xiuqing, et al.. Evaluation and comparison of modulation transfer function for FY-3B/C MERSI on early orbit[J]. Optics and Precision Engineering, 2015, 23(7):1838-1844(闵敏, 白玉, 胡秀清, 等. FY-3B/C中分辨率光谱成像仪在轨初期传递函数的评价和比较[J]. 光学精密工程, 2015, 23(7):1838-1844)
    [33]
    Guo Fengjie, Li Ting, Ji min, et al. Time series analysis and prediction of Qinghai Lake area from 2000 to 2019[J]. Science Technology and Engineering, 2022, 22(2):740-748(郭丰杰, 李婷, 季民. 2000-2019年青海湖面积时序特征分析 及预 测[J]. 科学 技术 与工 程, 2022, 22(02):740-748)
    [34]
    QI miaomiao, YAO Xiaojun, LIU Shiyin et al. Dynamic change of Lake Qinghai shoreline from 1973 to 2018[J]. Lake Sciences, 2020, 32(02):573-586(祁苗苗,姚晓军,刘时银, 等. 1973-2018年青海湖岸线动态变化[J]. 湖泊科学, 2020, 32(02):573-586)
  • Related Articles

    [1]WANG Yu, YANG Liping, REN Jie, ZHANG Jing, KONG Jinling, HOU Chenglei. An Oasis Soil Moisture Inversion Model Using ALOS-2 and Landsat 8 Data[J]. Geomatics and Information Science of Wuhan University, 2024, 49(9): 1630-1638. DOI: 10.13203/j.whugis20220008
    [3]LUO Ling, MAO Dehua, ZHANG Bai, WANG Zongming, YANG Guang. Remote Sensing Estimation for Light Use Efficiency of Phragmites australis Based on Landsat OLI over Typical Wetlands[J]. Geomatics and Information Science of Wuhan University, 2020, 45(4): 524-533. DOI: 10.13203/j.whugis20180294
    [4]WU Xiaoping, XU Hanqiu, JIANG Qiaoling. Cross-Comparison of GF-1, GF-2 and Landsat-8 OLI Sensor Data[J]. Geomatics and Information Science of Wuhan University, 2020, 45(1): 150-158. DOI: 10.13203/j.whugis20190084
    [5]YE Taoyan, LI Li, YAO Yanming, XIA Yuezhang, GUAN Weibing. Inter-Annual Variability of the Turbidity Maximum Zone in Hangzhou Bay Based on Landsat Imagery[J]. Geomatics and Information Science of Wuhan University, 2019, 44(9): 1377-1384. DOI: 10.13203/j.whugis20170346
    [6]HU Deyong, QIAO Kun, WANG Xingling, ZHAO Limin, JI Guohua. Comparison of Three Single-window Algorithms for Retrieving Land-Surface Temperature with Landsat 8 TIRS Data[J]. Geomatics and Information Science of Wuhan University, 2017, 42(7): 869-876. DOI: 10.13203/j.whugis20150164
    [7]FENG Qi, CHENG Xuejun, SHEN Xin, XIAO Xiao, WANG Lihui, ZHANG Wen. Inland Riverine Turbidity Estimation for Hanjiang River with Landsat 8 OLI Imager[J]. Geomatics and Information Science of Wuhan University, 2017, 42(5): 643-647. DOI: 10.13203/j.whugis20141002
    [8]LU Chunyan, WANG Zongming, JIA Mingming, ZHANG Jing, MAN Weidong, MAO Dehua. Peatland Extraction Based on ENVISAT ASAR, Landsat TM and DEM Data[J]. Geomatics and Information Science of Wuhan University, 2017, 42(2): 185-192. DOI: 10.13203/j.whugis20140669
    [9]WANG Fei, QIN Zhihao, SONG Caiying. An Efficient Approach for Pixel Decomposition of Land Surface Temperature from Landsat TM Data[J]. Geomatics and Information Science of Wuhan University, 2017, 42(1): 116-122. DOI: 10.13203/j.whugis20140604
    [10]XU Hanqiu. Image-based Normalization Technique Used for Landsat TM/ETM~+ Imagery[J]. Geomatics and Information Science of Wuhan University, 2007, 32(1): 62-66.

Catalog

    Article views (332) PDF downloads (30) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return