HU Deyong, QIAO Kun, WANG Xingling, ZHAO Limin, JI Guohua. Comparison of Three Single-window Algorithms for Retrieving Land-Surface Temperature with Landsat 8 TIRS Data[J]. Geomatics and Information Science of Wuhan University, 2017, 42(7): 869-876. DOI: 10.13203/j.whugis20150164
Citation: HU Deyong, QIAO Kun, WANG Xingling, ZHAO Limin, JI Guohua. Comparison of Three Single-window Algorithms for Retrieving Land-Surface Temperature with Landsat 8 TIRS Data[J]. Geomatics and Information Science of Wuhan University, 2017, 42(7): 869-876. DOI: 10.13203/j.whugis20150164

Comparison of Three Single-window Algorithms for Retrieving Land-Surface Temperature with Landsat 8 TIRS Data

Funds: 

The National Natural Science Foundation of China 41671339

the "Twelfth Five Year Plan" Advanced Project on Civil Space of National Defense Science and Industry Bureau D030101

More Information
  • Author Bio:

    HU Deyong, PhD, professor, specializes in resources and environment remote sensing, etc. E-mail: deyonghu@163.com

  • Corresponding author:

    QIAO Kun, master. E-mail: qiaoyingying2009@126.com

  • Received Date: December 08, 2015
  • Published Date: July 04, 2017
  • Land surface temperature (LST) is one of the important biophysical variables affecting the exchange of water and energy between land-surface and atmosphere, and it is significant to retrieve LST accurately. The mono-window algorithm is more applied in Landsat TM 6 data, including Jiménez-Muñoz mono-window algorithm (JM_SC) and Qin Zhihao mono-window algorithm (Q_SC). There are a lot of changes for Landsat8 thermal infrared sensor (TIRS) compared with Landsat TM6. Thus a mono-window algorithm for Landsat 8 data (TIRS10_SC) was proposed first, and then some comparison and analysis of three mono-window algorithms were conducted in this paper. The results show that:(1) The TIRS10_SC algorithm is closely integrated with the characteristics of Landsat8 TIRS sensor and it performs well to retrieve LST of different land-cover types based on the retrieval of atmospheric transmittance and land-surface emissivity. (2) Through the comparative analysis, it is found that the retrieval accuracy with Q_SC and TIRS10_SC is higher than JM_SC algorithm. (3) The retrieval results of homogeneous underlying surfaces such as bare soil land and cement surfaces are more accurate than vegetated surfaces. For bare soil land and cement surfaces, the average error of TIRS10_SC and Q_SC algorithm is 0.60℃, and that of JM_SC is 1.01℃; for vegetated surfaces, the average error of TIRS10_SC and Q_SC algorithm is 1.48℃, and that of JM_SC is 1.26℃.In order to improve the LST retrieval accuracy of vegetated surfaces in urban areas, the land-surface emissivity characteristics of vegetated surfaces need to be quantified more accurately.
  • [1]
    覃志豪, 高懋芳, 秦晓敏, 等.农业灾害监测中的地表温度遥感反演方法——以MODIS数据为例[J].自然灾害学报, 2005, 14(4):64-71 http://www.cnki.com.cn/Article/CJFDTOTAL-ZRZH200504010.htm

    Qin Zhihao, Gao Maofang, Qin Xiaomin, et al. Methodology to Retrieve Land Surface Temperature from MODIS Data for Agricultural Drought Monitoring in China[J]. Journal of Natural Disasters, 2005, 14(4):64-71 http://www.cnki.com.cn/Article/CJFDTOTAL-ZRZH200504010.htm
    [2]
    Sobrino J A, Gōmez M, Jiménez-Muñoz J C, et al. A Simple Algorithm to Estimate Evapotranspiration from DAIS Data:Application to the DAISEX Campaigns[J]. Journal of Hydrology, 2005, 315(1/4):117-125 https://www.researchgate.net/publication/222521491_A_Simple_Algorithm_to_Estimate_Evapotranspiration_From_DAIS_Data_Application_to_the_DAISEX_Campaigns
    [3]
    罗菊花, 张竞成, 黄文江, 等.基于单通道算法的HJ-1与Landsat 5 TM地表温度反演一致性研究[J].光谱学与光谱分析, 2010, 30(12):3285-3289 doi: 10.3964/j.issn.1000-0593(2010)12-3285-05

    Luo Juhua, Zhang Jingcheng, Huang Wenjiang, et al. The Analysis of Consistency Between HJ-1B and Landsat5 TM For Retrieving LST Based on the Single-channel Algorithm[J]. Spectroscopy and Spectral Analysis, 2010, 30(12):3285-3289 doi: 10.3964/j.issn.1000-0593(2010)12-3285-05
    [4]
    Jiménez-Muñoz J C, Sobrino J A, Skokovic D, et al. Land Surface Temperature Retrieval Methods from Landsat-8 Thermal Infrared Sensor Data[J]. Geoscience and Remote Sensing Letters, 2014, 11(10):1840-1843 doi: 10.1109/LGRS.2014.2312032
    [5]
    Rozenstei O, Qin Z H, Derimian Y, et al. Derivation of Land Surface Temperature for Landsat 8 TIRS Using a Split Window Algorithm[J]. Sensors, 2014, 14(4):5768-5780 doi: 10.3390/s140405768
    [6]
    Yu X L, Guo X L, Wu Z C. Land Surface Temperature Retrieval from Landsat8 TIRS-Comparison Between Radiative Transfer Equation-based Method, Split Window Algorithm and Single Channel Method[J]. Remote Sensing, 2014, 6(10):9829-9852 doi: 10.3390/rs6109829
    [7]
    USGS. January 29, 2014-Landsat 8 Reprocessing to Begin February 3, 2014[EB/OL]. http://landsat.usgs.gov/calibration_notices.php, 2015-04-26
    [8]
    Jiménez-Muñoz J C, Sobrino J A. A Generalized Single-channel Method for Retrieving Land Surface Temperature from Remote Sensing Data[J]. Journal of geophysical research, 2003, 108(D22):2015-2023 https://www.researchgate.net/publication/228591095_A_generalized_single-channel_method_for_retrieving_land_surface_temperature_from_remote_sensing_data_vol_109_art_no_D08112_2004
    [9]
    Qin Z H, Karnieli A, Berliner P. A Mono-Window Algorithm for Retrieving Land Surface Temperature from Landsat TM Data and Its Application to the Israel-Egypt Border Region[J]. International Journal of Remote Sensing, 2001, 22(18):3719-3746 doi: 10.1080/01431160010006971
    [10]
    覃志豪, 李文娟, 张明华, 等.单窗算法的大气参数估算方法[J].国土资源遥感, 2003, 56(2):37-43 doi: 10.6046/gtzyyg.2003.02.10

    Qin Zhihao, Li Wenjuan, Zhang Minghua, et al. Estimating of the Essential Atmospheric Parameters of Mono-Window Algorithm for Land Surface Temperature Retrieval from Landsat TM6[J]. Remote Sensing for Land Resources, 2003, 56(2):37-43 doi: 10.6046/gtzyyg.2003.02.10
    [11]
    毛克彪, 覃志豪, 王建明, 等.针对MODIS数据的大气水汽含量反演及31和32波段透过率计算[J].国土资源遥感, 2005, 63(1):26-29 doi: 10.6046/gtzyyg.2005.01.06

    Mao Kebiao, Qin Zhihao, Wang Jianming, et al. Lowtran Retrieval of Atmospheric Water Content and Transmittance Computation of MODIS 31 and 32[J]. Remote Sensing for Land Resources, 2005, 63(1):26-29 doi: 10.6046/gtzyyg.2005.01.06
    [12]
    Gao B C, Kaufman Y J. Remote Sensing of Water Vapor in near IR from EOS/MODIS[J]. IEEE Transactionson Geosciences and Remote Sensing, 1992, 30(5):871-884 doi: 10.1109/36.175321
    [13]
    覃志豪, 李文娟, 徐斌, 等.陆地卫星TM6波段范围内地表比辐射率的估计[J].国土资源遥感, 2004, 61(3):28-32 doi: 10.6046/gtzyyg.2004.03.07

    Qin Zhihao, Li Wenjuan, Xu Bin, et al. The Estimation of Land Surface Emissivity for Landsat TM6[J]. Remote Sensing for Land Resources, 2004, 61(3):28-32 doi: 10.6046/gtzyyg.2004.03.07
    [14]
    宋挺, 段峥, 刘军志, 等.基于Landsat-8卫星遥感数据的地表温度反演算法对比研究[J].遥感学报, 2015, 19(3):1993-2002 http://www.cnki.com.cn/Article/CJFDTOTAL-HTJK201405004.htm

    Song Ting, Duan Zhen, Liu Junzhi, et al. Comparison of Four Algorithms for Retrieving Land Surface Temperature Using Landsat-8 Satellite Data[J]. Journal of Remote Sensing, 2015, 19(3):1993-2002 http://www.cnki.com.cn/Article/CJFDTOTAL-HTJK201405004.htm
    [15]
    Sobrino J A, Jiménez-Muñoz J C. Land Surface Temperature Retrieval from Landsat TM 5[J]. Remote Sensing of Environment, 2004, 90(4):434-440 doi: 10.1016/j.rse.2004.02.003
    [16]
    Carlson T N, Ripley D A. On the Relation Between NDVI, Fractional Vegetation Cover, and Leaf Area Index[J]. Remote Sensing of Environment, 1997, 62:241-252 doi: 10.1016/S0034-4257(97)00104-1
  • Related Articles

    [1]WANG Yu, YANG Liping, REN Jie, ZHANG Jing, KONG Jinling, HOU Chenglei. An Oasis Soil Moisture Inversion Model Using ALOS-2 and Landsat 8 Data[J]. Geomatics and Information Science of Wuhan University, 2024, 49(9): 1630-1638. DOI: 10.13203/j.whugis20220008
    [2]MIAO Shunxia, SUN Kaimin, HU Xiuqing, QU Jianhua, LIU Junyi. Capability Analysis of Lake Extent Monitoring in Highland Region from MERSI-II onboard FY-3D[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20220653
    [4]LUO Ling, MAO Dehua, ZHANG Bai, WANG Zongming, YANG Guang. Remote Sensing Estimation for Light Use Efficiency of Phragmites australis Based on Landsat OLI over Typical Wetlands[J]. Geomatics and Information Science of Wuhan University, 2020, 45(4): 524-533. DOI: 10.13203/j.whugis20180294
    [5]WU Xiaoping, XU Hanqiu, JIANG Qiaoling. Cross-Comparison of GF-1, GF-2 and Landsat-8 OLI Sensor Data[J]. Geomatics and Information Science of Wuhan University, 2020, 45(1): 150-158. DOI: 10.13203/j.whugis20190084
    [6]YE Taoyan, LI Li, YAO Yanming, XIA Yuezhang, GUAN Weibing. Inter-Annual Variability of the Turbidity Maximum Zone in Hangzhou Bay Based on Landsat Imagery[J]. Geomatics and Information Science of Wuhan University, 2019, 44(9): 1377-1384. DOI: 10.13203/j.whugis20170346
    [7]FENG Qi, CHENG Xuejun, SHEN Xin, XIAO Xiao, WANG Lihui, ZHANG Wen. Inland Riverine Turbidity Estimation for Hanjiang River with Landsat 8 OLI Imager[J]. Geomatics and Information Science of Wuhan University, 2017, 42(5): 643-647. DOI: 10.13203/j.whugis20141002
    [8]LU Chunyan, WANG Zongming, JIA Mingming, ZHANG Jing, MAN Weidong, MAO Dehua. Peatland Extraction Based on ENVISAT ASAR, Landsat TM and DEM Data[J]. Geomatics and Information Science of Wuhan University, 2017, 42(2): 185-192. DOI: 10.13203/j.whugis20140669
    [9]WANG Fei, QIN Zhihao, SONG Caiying. An Efficient Approach for Pixel Decomposition of Land Surface Temperature from Landsat TM Data[J]. Geomatics and Information Science of Wuhan University, 2017, 42(1): 116-122. DOI: 10.13203/j.whugis20140604
    [10]XU Hanqiu. Image-based Normalization Technique Used for Landsat TM/ETM~+ Imagery[J]. Geomatics and Information Science of Wuhan University, 2007, 32(1): 62-66.

Catalog

    Article views PDF downloads Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return