HU Deyong, QIAO Kun, WANG Xingling, ZHAO Limin, JI Guohua. Comparison of Three Single-window Algorithms for Retrieving Land-Surface Temperature with Landsat 8 TIRS Data[J]. Geomatics and Information Science of Wuhan University, 2017, 42(7): 869-876. DOI: 10.13203/j.whugis20150164
Citation: HU Deyong, QIAO Kun, WANG Xingling, ZHAO Limin, JI Guohua. Comparison of Three Single-window Algorithms for Retrieving Land-Surface Temperature with Landsat 8 TIRS Data[J]. Geomatics and Information Science of Wuhan University, 2017, 42(7): 869-876. DOI: 10.13203/j.whugis20150164

Comparison of Three Single-window Algorithms for Retrieving Land-Surface Temperature with Landsat 8 TIRS Data

Funds: 

The National Natural Science Foundation of China 41671339

the "Twelfth Five Year Plan" Advanced Project on Civil Space of National Defense Science and Industry Bureau D030101

More Information
  • Author Bio:

    HU Deyong, PhD, professor, specializes in resources and environment remote sensing, etc. E-mail: deyonghu@163.com

  • Corresponding author:

    QIAO Kun, master. E-mail: qiaoyingying2009@126.com

  • Received Date: December 08, 2015
  • Published Date: July 04, 2017
  • Land surface temperature (LST) is one of the important biophysical variables affecting the exchange of water and energy between land-surface and atmosphere, and it is significant to retrieve LST accurately. The mono-window algorithm is more applied in Landsat TM 6 data, including Jiménez-Muñoz mono-window algorithm (JM_SC) and Qin Zhihao mono-window algorithm (Q_SC). There are a lot of changes for Landsat8 thermal infrared sensor (TIRS) compared with Landsat TM6. Thus a mono-window algorithm for Landsat 8 data (TIRS10_SC) was proposed first, and then some comparison and analysis of three mono-window algorithms were conducted in this paper. The results show that:(1) The TIRS10_SC algorithm is closely integrated with the characteristics of Landsat8 TIRS sensor and it performs well to retrieve LST of different land-cover types based on the retrieval of atmospheric transmittance and land-surface emissivity. (2) Through the comparative analysis, it is found that the retrieval accuracy with Q_SC and TIRS10_SC is higher than JM_SC algorithm. (3) The retrieval results of homogeneous underlying surfaces such as bare soil land and cement surfaces are more accurate than vegetated surfaces. For bare soil land and cement surfaces, the average error of TIRS10_SC and Q_SC algorithm is 0.60℃, and that of JM_SC is 1.01℃; for vegetated surfaces, the average error of TIRS10_SC and Q_SC algorithm is 1.48℃, and that of JM_SC is 1.26℃.In order to improve the LST retrieval accuracy of vegetated surfaces in urban areas, the land-surface emissivity characteristics of vegetated surfaces need to be quantified more accurately.
  • [1]
    覃志豪, 高懋芳, 秦晓敏, 等.农业灾害监测中的地表温度遥感反演方法——以MODIS数据为例[J].自然灾害学报, 2005, 14(4):64-71 http://www.cnki.com.cn/Article/CJFDTOTAL-ZRZH200504010.htm

    Qin Zhihao, Gao Maofang, Qin Xiaomin, et al. Methodology to Retrieve Land Surface Temperature from MODIS Data for Agricultural Drought Monitoring in China[J]. Journal of Natural Disasters, 2005, 14(4):64-71 http://www.cnki.com.cn/Article/CJFDTOTAL-ZRZH200504010.htm
    [2]
    Sobrino J A, Gōmez M, Jiménez-Muñoz J C, et al. A Simple Algorithm to Estimate Evapotranspiration from DAIS Data:Application to the DAISEX Campaigns[J]. Journal of Hydrology, 2005, 315(1/4):117-125 https://www.researchgate.net/publication/222521491_A_Simple_Algorithm_to_Estimate_Evapotranspiration_From_DAIS_Data_Application_to_the_DAISEX_Campaigns
    [3]
    罗菊花, 张竞成, 黄文江, 等.基于单通道算法的HJ-1与Landsat 5 TM地表温度反演一致性研究[J].光谱学与光谱分析, 2010, 30(12):3285-3289 doi: 10.3964/j.issn.1000-0593(2010)12-3285-05

    Luo Juhua, Zhang Jingcheng, Huang Wenjiang, et al. The Analysis of Consistency Between HJ-1B and Landsat5 TM For Retrieving LST Based on the Single-channel Algorithm[J]. Spectroscopy and Spectral Analysis, 2010, 30(12):3285-3289 doi: 10.3964/j.issn.1000-0593(2010)12-3285-05
    [4]
    Jiménez-Muñoz J C, Sobrino J A, Skokovic D, et al. Land Surface Temperature Retrieval Methods from Landsat-8 Thermal Infrared Sensor Data[J]. Geoscience and Remote Sensing Letters, 2014, 11(10):1840-1843 doi: 10.1109/LGRS.2014.2312032
    [5]
    Rozenstei O, Qin Z H, Derimian Y, et al. Derivation of Land Surface Temperature for Landsat 8 TIRS Using a Split Window Algorithm[J]. Sensors, 2014, 14(4):5768-5780 doi: 10.3390/s140405768
    [6]
    Yu X L, Guo X L, Wu Z C. Land Surface Temperature Retrieval from Landsat8 TIRS-Comparison Between Radiative Transfer Equation-based Method, Split Window Algorithm and Single Channel Method[J]. Remote Sensing, 2014, 6(10):9829-9852 doi: 10.3390/rs6109829
    [7]
    USGS. January 29, 2014-Landsat 8 Reprocessing to Begin February 3, 2014[EB/OL]. http://landsat.usgs.gov/calibration_notices.php, 2015-04-26
    [8]
    Jiménez-Muñoz J C, Sobrino J A. A Generalized Single-channel Method for Retrieving Land Surface Temperature from Remote Sensing Data[J]. Journal of geophysical research, 2003, 108(D22):2015-2023 https://www.researchgate.net/publication/228591095_A_generalized_single-channel_method_for_retrieving_land_surface_temperature_from_remote_sensing_data_vol_109_art_no_D08112_2004
    [9]
    Qin Z H, Karnieli A, Berliner P. A Mono-Window Algorithm for Retrieving Land Surface Temperature from Landsat TM Data and Its Application to the Israel-Egypt Border Region[J]. International Journal of Remote Sensing, 2001, 22(18):3719-3746 doi: 10.1080/01431160010006971
    [10]
    覃志豪, 李文娟, 张明华, 等.单窗算法的大气参数估算方法[J].国土资源遥感, 2003, 56(2):37-43 doi: 10.6046/gtzyyg.2003.02.10

    Qin Zhihao, Li Wenjuan, Zhang Minghua, et al. Estimating of the Essential Atmospheric Parameters of Mono-Window Algorithm for Land Surface Temperature Retrieval from Landsat TM6[J]. Remote Sensing for Land Resources, 2003, 56(2):37-43 doi: 10.6046/gtzyyg.2003.02.10
    [11]
    毛克彪, 覃志豪, 王建明, 等.针对MODIS数据的大气水汽含量反演及31和32波段透过率计算[J].国土资源遥感, 2005, 63(1):26-29 doi: 10.6046/gtzyyg.2005.01.06

    Mao Kebiao, Qin Zhihao, Wang Jianming, et al. Lowtran Retrieval of Atmospheric Water Content and Transmittance Computation of MODIS 31 and 32[J]. Remote Sensing for Land Resources, 2005, 63(1):26-29 doi: 10.6046/gtzyyg.2005.01.06
    [12]
    Gao B C, Kaufman Y J. Remote Sensing of Water Vapor in near IR from EOS/MODIS[J]. IEEE Transactionson Geosciences and Remote Sensing, 1992, 30(5):871-884 doi: 10.1109/36.175321
    [13]
    覃志豪, 李文娟, 徐斌, 等.陆地卫星TM6波段范围内地表比辐射率的估计[J].国土资源遥感, 2004, 61(3):28-32 doi: 10.6046/gtzyyg.2004.03.07

    Qin Zhihao, Li Wenjuan, Xu Bin, et al. The Estimation of Land Surface Emissivity for Landsat TM6[J]. Remote Sensing for Land Resources, 2004, 61(3):28-32 doi: 10.6046/gtzyyg.2004.03.07
    [14]
    宋挺, 段峥, 刘军志, 等.基于Landsat-8卫星遥感数据的地表温度反演算法对比研究[J].遥感学报, 2015, 19(3):1993-2002 http://www.cnki.com.cn/Article/CJFDTOTAL-HTJK201405004.htm

    Song Ting, Duan Zhen, Liu Junzhi, et al. Comparison of Four Algorithms for Retrieving Land Surface Temperature Using Landsat-8 Satellite Data[J]. Journal of Remote Sensing, 2015, 19(3):1993-2002 http://www.cnki.com.cn/Article/CJFDTOTAL-HTJK201405004.htm
    [15]
    Sobrino J A, Jiménez-Muñoz J C. Land Surface Temperature Retrieval from Landsat TM 5[J]. Remote Sensing of Environment, 2004, 90(4):434-440 doi: 10.1016/j.rse.2004.02.003
    [16]
    Carlson T N, Ripley D A. On the Relation Between NDVI, Fractional Vegetation Cover, and Leaf Area Index[J]. Remote Sensing of Environment, 1997, 62:241-252 doi: 10.1016/S0034-4257(97)00104-1
  • Related Articles

    [1]ZHU Shaolin, YUE Dongjie, HE Lina, CHEN Jian, LIU Shengnan. BDS-2/BDS-3 Joint Triple-Frequency Precise Point Positioning Models and Bias Characteristic Analysis[J]. Geomatics and Information Science of Wuhan University, 2023, 48(12): 2049-2059. DOI: 10.13203/j.whugis20210273
    [2]GENG Jianghui, YAN Zhe, WEN Qiang. Multi-GNSS Satellite Clock and Bias Product Combination: The Third IGS Reprocessing Campaign[J]. Geomatics and Information Science of Wuhan University, 2023, 48(7): 1070-1081. DOI: 10.13203/j.whugis20230071
    [3]LIU Mingliang, AN Jiachun, WANG Zemin, ZHANG Baojun, SONG Xiangyu. Performance Analysis of BDS-3 Multi-frequency Pseudorange Positioning[J]. Geomatics and Information Science of Wuhan University, 2023, 48(6): 902-910. DOI: 10.13203/j.whugis20200714
    [4]YUAN Haijun, ZHANG Zhetao, HE Xiufeng, XU Tianyang, XU Xueyong. Stability Analysis of BDS-3 Satellite Differential Code Bias and Its Impacts on Single Point Positioning[J]. Geomatics and Information Science of Wuhan University, 2023, 48(3): 425-432. DOI: 10.13203/j.whugis20200517
    [5]ZHOU Ren-yu, HU Zhi-gang, CAI Hong-liang, ZHAO Zhen, RAO Yong-nan, CHEN Liang, ZHAO Qi-le. Analysis of Pseudorange and Carrier Ranging Deviation of BDS-3 Using Parabolic Directional Antenna[J]. Geomatics and Information Science of Wuhan University, 2021, 46(9): 1298-1308. DOI: 10.13203/j.whugis20200182
    [6]ZHANG Hui, HAO Jinming, LIU Weiping, ZHOU Rui, TIAN Yingguo. GPS/BDS Precise Point Positioning Model with Receiver DCB Parameters for Raw Observations[J]. Geomatics and Information Science of Wuhan University, 2019, 44(4): 495-500, 592. DOI: 10.13203/j.whugis20170119
    [7]ZOU Xuan, LI Zongnan, CHEN Liang, LI Min, TANG Weiming, SHI Chuang. Modeling BeiDou IGSO and MEO Satellites Code Pseudorange Variations[J]. Geomatics and Information Science of Wuhan University, 2018, 43(11): 1661-1666. DOI: 10.13203/j.whugis20160275
    [8]LI Xin, ZHANG Xiaohong, ZENG Qi, PAN Lin, ZHU Feng. The Estimation of BeiDou Satellite-induced Code Bias and Its Impact on the Precise Positioning[J]. Geomatics and Information Science of Wuhan University, 2017, 42(10): 1461-1467. DOI: 10.13203/j.whugis20160062
    [9]LOU Yidong, GONG Xiaopeng, GU Shengfeng, ZHENG Fu, YI Wenting. The Characteristic and Effect of Code Bias Variations of BeiDou[J]. Geomatics and Information Science of Wuhan University, 2017, 42(8): 1040-1046. DOI: 10.13203/j.whugis20150107
    [10]FAN Lei, ZHONG Shiming, LI Zishen, OU Jikun. Effect of Tracking Stations Distribution on the Estimation of Differential Code Biases by GPS Satellites Based on Uncombined Precise Point Positioning[J]. Geomatics and Information Science of Wuhan University, 2016, 41(3): 316-321. DOI: 10.13203/j.whugis20140114
  • Cited by

    Periodical cited type(28)

    1. 吕峥,孙群,温伯威,张付兵,马京振. 顾及形状相似性的道路与居民地协同化简方法. 地球信息科学学报. 2024(05): 1270-1282 .
    2. 铁占琦. 利用改进的Hausdorff距离匹配多尺度线要素. 地理空间信息. 2024(05): 62-65 .
    3. 王庆社,王雅欣,姜青香,郭思慧. “天地图·北京”多源道路数据融合关键技术研究. 北京测绘. 2024(06): 874-879 .
    4. 陈钉均,梁芮嘉. 基于特征聚类驾驶员服从度跟驰模型参数标定. 计算机仿真. 2024(10): 126-132 .
    5. 齐杰,王中辉,李驿言. 基于图卷积神经网络的道路网匹配. 测绘通报. 2023(12): 19-24+44 .
    6. 吴冰娇,王中辉,杨飞. 用于多尺度道路网匹配的语义相似性计算模型. 测绘科学. 2022(03): 166-173 .
    7. 蒋阳升,俞高赏,胡路,李衍. 基于聚类站点客流公共特征的轨道交通车站精细分类. 交通运输系统工程与信息. 2022(04): 106-112 .
    8. 周秀华,李乃强. 基于多种相似度特征的道路实体融合方法. 测绘通报. 2021(08): 102-105+157 .
    9. 秦育罗,宋伟东,张在岩,孙小荣. 顾及几何特征和拓扑连续性的道路网匹配方法. 测绘通报. 2021(08): 55-60 .
    10. 杨飞,王中辉. 河系几何相似性的层次度量方法. 地球信息科学学报. 2021(12): 2139-2150 .
    11. 程绵绵,孙群,季晓林,赵云鹏. 改进平均Fréchet距离法及在化简评价中的应用. 测绘科学. 2020(03): 170-177 .
    12. 赵元棣,田英杰,吴佳馨. 航空器飞行轨迹相似性度量及聚类分析. 中国科技论文. 2020(02): 249-254 .
    13. Wenyue GUO,Anzhu YU,Qun SUN,Shaomei LI,Qing XU,Bowei WEN,Yuanfu LI. A Multisource Contour Matching Method Considering the Similarity of Geometric Features. Journal of Geodesy and Geoinformation Science. 2020(03): 76-87 .
    14. 秦育罗,郭冰,孙小荣. 改进Hausdorff距离及其在多尺度道路网匹配中的应用. 测绘科学技术学报. 2020(03): 313-318 .
    15. 郝志伟,李成名,殷勇,武鹏达,吴伟. 一种基于Fréchet距离的断裂等高线内插算法. 测绘通报. 2019(01): 65-68+74 .
    16. 郭文月,刘海砚,孙群,余岸竹,丁梓越. 顾及几何特征相似性的多源等高线匹配方法. 测绘学报. 2019(05): 643-653 .
    17. 宗琴,彭荃,秦万英. 一种基于模糊矩阵的空间面对象相似性度量算法. 北京测绘. 2019(10): 1218-1221 .
    18. 李兆兴,翟京生,武芳. 线要素综合的形状相似性评价方法. 武汉大学学报(信息科学版). 2019(12): 1859-1864 .
    19. 周家新,陈建勇,单志超,陈长康. 航空磁探中潜艇目标的联合估计检测方法研究. 兵工学报. 2018(05): 833-840 .
    20. 郭宁宁,盛业华,吕海洋,黄宝群,张思阳. 径向基函数神经网络的路网自动匹配算法. 测绘科学. 2018(03): 45-50 .
    21. 张瀚,李静,吕品,徐永志,刘格林. 六角格网的弧线矢量数据量化拟合方法. 计算机辅助设计与图形学学报. 2018(04): 557-567 .
    22. 邵世维,刘辉,肖立霞,王恒. 一种基于Fréchet距离的复杂线状要素匹配方法. 武汉大学学报(信息科学版). 2018(04): 516-521 .
    23. 苏满佳,张逸鸿,谢荣臻,朱海飞,管贻生,毛世鑫. 连续软体机器人的结构范型与形态复现. 机器人. 2018(05): 640-647+672 .
    24. 宗琴,姜树辉,刘艳霞. 多尺度矢量地图中模糊相似变换及其度量模型. 测绘科学. 2018(11): 72-78 .
    25. 郭文月,刘海砚,孙群,余岸竹,季晓林. 利用最长公共子序列度量线要素相似性的方法. 测绘科学技术学报. 2018(05): 518-523 .
    26. 郭宁宁,盛业华,黄宝群,吕海洋,张思阳. 基于人工神经网络的多特征因子路网匹配算法. 地球信息科学学报. 2016(09): 1153-1159 .
    27. 杨亚辉. 利用几何相似性快速测量鱼重的数学模型. 电子技术与软件工程. 2016(20): 182-183 .
    28. 逯跃锋,张奎,刘硕,吴跃,赵硕,李强,冯晨. 一种基于斜率差和方位角的矢量数据匹配算法. 山东大学学报(工学版). 2016(06): 31-39 .

    Other cited types(30)

Catalog

    Article views (5066) PDF downloads (905) Cited by(58)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return