WANG Fei, QIN Zhihao, SONG Caiying. An Efficient Approach for Pixel Decomposition of Land Surface Temperature from Landsat TM Data[J]. Geomatics and Information Science of Wuhan University, 2017, 42(1): 116-122. DOI: 10.13203/j.whugis20140604
Citation: WANG Fei, QIN Zhihao, SONG Caiying. An Efficient Approach for Pixel Decomposition of Land Surface Temperature from Landsat TM Data[J]. Geomatics and Information Science of Wuhan University, 2017, 42(1): 116-122. DOI: 10.13203/j.whugis20140604

An Efficient Approach for Pixel Decomposition of Land Surface Temperature from Landsat TM Data

Funds: 

The National Natural Science Foundation of China 41471300

More Information
  • Author Bio:

    WANG Fei, PhD candidate, specializes in thermal remote sensing and agriculture remote sensing. E-mail: essiwf@163.com

  • Corresponding author:

    QIN Zhihao, PhD, professor. E-mail: zhihaoqin@163.com

  • Received Date: December 27, 2014
  • Published Date: January 04, 2017
  • The spatial resolution of land surface temperature (LST, 120 m) retrieved from thermal infrared (TIR) band is lower than its visible/near-infrared (VNIR) bands (30 m). LST image with high spatial resolution compatible with VNIR bands of Landsat TM is very important for application of the LST image to many studies such as environmental monitoring. The objective of this study is to decompose the coarse pixels of the LST image data into the same pixel scale of the auxiliary VNIR data. Firstly, the E-DisTrad method is used to divide LST of the parent pixels into the sub-pixels to obtain the first decomposition temperature and the theoretical radiance at-sensor of each sub-pixel. Then, a chess-segmentation is done to the temperature of the sub-pixels on the basis of the object-oriented image segmentation method to compute the weight for each sub-pixel, which is consequently used to allocate the thermal radiance for each sub-pixel to generate the decomposed LST image. At last, a method of increase the spatial resolution firstly and then used for double-step pixel decomposition is executed in the study to validate the accuracy and efficiency of the decomposition method for the Landsat TM image of Beijing. The result showed that the double-step pixel decomposition method is applicable for decomposition of LST images for high spatial resolution, reflecting the spatial differences of different land use and land cover and ensure the conservation of energy before and after pixel decomposition. Therefore we can conclude that it is ideally suited for complex covered surface area of downscaling thermal infrared band remote sensing data.
  • [1]
    Lu D, Weng Q. SpectralMixture Analysis of ASTER Images for Examining the Relationship Between Urban Thermal Features and Biophysical Descriptors in Indianapolis, Indiana, USA[J]. Remote Sensing of Environment, 2006, 104(2):157-167 doi: 10.1016/j.rse.2005.11.015
    [2]
    Li Zhaoliang, Tang Bohui. Wu Hua, et al. Satellite-Derived Land Surface Temperature:Current Status and Perspective[J]. Remote Sensing of Environment, 2013, 131:14-37 doi: 10.1016/j.rse.2012.12.008
    [3]
    曹丽琴, 张良培, 李平湘, 等.城市下垫面覆盖类型变化对热岛效应影响的模拟研究[J].武汉大学学报·信息科学版, 2008, 33(12):1229-1232

    Simulation Study of Influence of Change of Land Surface Types on Urban Heat Island[J]. Geomatics and Information Science of Wuhan University, 2008, 33(12):1229-1232
    [4]
    Agam N, Kustas W P, Anderson M C, et al. A Vegetation Index Based Technique for Spatial Sharpening of Thermal Imagery[J]. Remote Sensing of Environment, 2007, 107(4):545-558 doi: 10.1016/j.rse.2006.10.006
    [5]
    杨贵军, 柳钦火, 刘强, 等.基于遗传自组织神经元网络的可见光与热红外遥感数据融合方法[J].武汉大学学报·信息科学版, 2007, 32(9):786-790 http://ch.whu.edu.cn/CN/abstract/abstract1986.shtml

    Yang Guijun, Liu Qinhuo, Liu Qiang, et al. Fusion of Visible and Thermal Infrared Remote Sensing Data Based on GA-SOFM Netural Network[J]. Geomatics and Information Science of Wuhan University, 2007, 32(9):786-790 http://ch.whu.edu.cn/CN/abstract/abstract1986.shtml
    [6]
    Friedl M. Forward and Inverse Modeling of Land Surface Energy Balance Using Surface Temperature Measurements[J].Remote Sensing of Environment, 2002, 79(2):344-354 http://citeseerx.ist.psu.edu/showciting?cid=5811350
    [7]
    Kustas W P, Norman J M, Anderson M C, et al. Estimating Subpixel Surface Temperatures and Energy Fluxes from the Vegetation Index-Radiometric Temperature Relationship[J]. Remote Sensing of Environment, 2003, 85(4):429-440 doi: 10.1016/S0034-4257(03)00036-1
    [8]
    Yang H J, Cong Z T, Liu Z W, et al.Estimating Subpixel Temperatures Using the Triangle Algorithm[J]. International Journal of Remote Sensing, 2010, 31:6047-6060 doi: 10.1080/01431160903376373
    [9]
    Sandholt I. A Simple Interpretation of the Surface Temperature/Vegetation Index Space for Assessment of Surface Moisture Status[J]. Remote Sensing of Environment, 2002, 79(2):213-224 http://www.docin.com/p-1155858698.html
    [10]
    Chen X L. Remote Sensing Image-Based Analysis of the Relationship Between Urban Heat Island and Land Use/Cover Changes[J]. Remote Sensing of Environment, 2006, 104(2):133-146 doi: 10.1016/j.rse.2005.11.016
    [11]
    Essa W, Verbeiren B, Kwast J, et al.Evaluation of the DisTrad Thermal Sharpening Methodology for Urban Areas[J]. International Journal of Applied Earth Observation and Geoinformation, 2012, 19:163-172 doi: 10.1016/j.jag.2012.05.010
    [12]
    Qin Z H, Karnieli A, Berliner P. A Mono-Window Algorithm for Retrieving Land Surface Temperature from Landsat TM Data and Its Application to the Israel-Egypt Border Region[J]. International Journal of Remote Sensing, 2001, 22(18):3719-3746 doi: 10.1080/01431160010006971
    [13]
    覃志豪, Zhang Minghua, Karnieli A, 等.用陆地卫星TM6数据演算地表温度的单窗算法[J].地理学报, 2001, 56(4):456-466 http://www.cnki.com.cn/Article/CJFDTOTAL-DLXB200104008.htm

    Qin Zhihao, Zhang Minghua, Karnieli A, et al. Mono-Window Algorithm for Retriving Land Surface Temperature from Landsat TM 6 Data[J]. Acta Geographica Sinica, 2001. 56(4):456-466 http://www.cnki.com.cn/Article/CJFDTOTAL-DLXB200104008.htm
    [14]
    王斐, 覃志豪, 王倩倩.基于地表类型的TM6波段像元分解方法[J].国土资源遥感, 2012, 94(3):54-59 http://www.cnki.com.cn/Article/CJFDTOTAL-GTYG201203012.htm

    Wang Fei, Qin Zhihao, Wang Qianqian. A Method of TM6 Band Pixel Decomposition Based on the Earth Surface Types[J]. Remote Sensing for Land & Resource, 2012, 94(3):54-59 http://www.cnki.com.cn/Article/CJFDTOTAL-GTYG201203012.htm
    [15]
    Zhu S, Guan H, Millington A C, et al. Disaggregation of Land Surface Temperature over a Heterogeneous Urban and Surrounding Suburban Area:A Case Study in Shanghai, China[J]. International Journal of Remote Sensing, 2013, 34(5):1707-1723 doi: 10.1080/01431161.2012.725957
  • Related Articles

    [1]SONG Weiwei, SONG Qisheng, HE Qianqian, GONG Xiaopeng, GU Shengfeng. Analysis of PPP-B2b Positioning Performance Enhanced by High-Precision Ionospheric Products[J]. Geomatics and Information Science of Wuhan University, 2024, 49(9): 1517-1526. DOI: 10.13203/j.whugis20230030
    [2]ZHU Shaolin, YUE Dongjie, HE Lina, CHEN Jian, LIU Shengnan. BDS-2/BDS-3 Joint Triple-Frequency Precise Point Positioning Models and Bias Characteristic Analysis[J]. Geomatics and Information Science of Wuhan University, 2023, 48(12): 2049-2059. DOI: 10.13203/j.whugis20210273
    [3]ZHAO Qile, TAO Jun, GUO Jing, CHEN Guo, XU Xiaolong, ZHANG Qiang, ZHANG Gaojian, XU Shengyi, LI Junqiang. Wide-Area Instantaneous cm-Level Precise Point Positioning: Method and Service System[J]. Geomatics and Information Science of Wuhan University, 2023, 48(7): 1058-1069. DOI: 10.13203/j.whugis20230202
    [4]YAN Zhongbao, ZHANG Xiaohong. Partial Ambiguity Resolution Method and Results Analysis for GNSS Uncombined PPP[J]. Geomatics and Information Science of Wuhan University, 2022, 47(6): 979-989. DOI: 10.13203/j.whugis20220025
    [5]ZHANG Hui, HAO Jinming, LIU Weiping, ZHOU Rui, TIAN Yingguo. GPS/BDS Precise Point Positioning Model with Receiver DCB Parameters for Raw Observations[J]. Geomatics and Information Science of Wuhan University, 2019, 44(4): 495-500, 592. DOI: 10.13203/j.whugis20170119
    [6]ZHANG Xiaohong, LIU Gen, GUO Fei, LI Xin. Model Comparison and Performance Analysis of Triple-frequency BDS Precise Point Positioning[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12): 2124-2130. DOI: 10.13203/j.whugis20180078
    [7]ZHANG Xiaohong, CAI Shixiang, LI Xingxing, GUO Fei. Accuracy Analysis of Time and Frequency Transfer Based on Precise Point Positioning[J]. Geomatics and Information Science of Wuhan University, 2010, 35(3): 274-278.
    [8]ZHANG Xiaohong, GUO Fei, LI Xingxing, LIN Xiaojing. Study on Precise Point Positioning Based on Combined GPS and GLONASS[J]. Geomatics and Information Science of Wuhan University, 2010, 35(1): 9-12.
    [9]FU Jianhong, YUAN Xiuxiao. Influence of GPS Base Station on Accuracy of Positioning by Airborne Position and Orientation System[J]. Geomatics and Information Science of Wuhan University, 2007, 32(5): 398-401.
    [10]Huang Shengxiang, Zhang Yan. Estimation of Accuracy Indicators for GPS Relative Positioning[J]. Geomatics and Information Science of Wuhan University, 1997, 22(1): 47-50.
  • Cited by

    Periodical cited type(22)

    1. 肖斌宸,叶飞,叶险峰,曾翔强. 电离层和地形复杂区域北斗/GNSS实时PPP性能及大气分析. 数据与计算发展前沿(中英文). 2025(01): 108-118 .
    2. 侯诚,史俊波,苟劲松,郭际明,邹进贵. 多路径误差对BDS-3变形监测精度的影响. 大地测量与地球动力学. 2024(02): 128-133 .
    3. 邓陈喜,姜维,王剑,蔡伯根. 基于北斗3号PPP-B2b信号的实时精密单点定位方法研究. 铁道学报. 2024(02): 63-73 .
    4. 于合理,孙晓东,贾赞杰,武智佳,代桃高. 限制环境下的GNSS精密授时方法研究综述. 海洋测绘. 2024(02): 46-50 .
    5. 许扬胤,任夏,明锋. 北斗三号PPP-B2b信号精密单点定位服务可用性分析. 全球定位系统. 2024(03): 10-19 .
    6. 肖恭伟,卞逸驰,何在民,广伟,尹翔飞,张润芝. 北斗三号PPP-B2b差分码偏差对UPPP解算的影响. 西安邮电大学学报. 2024(02): 1-10 .
    7. 宋伟伟,宋啟晟,何倩倩,龚晓鹏,辜声峰. 高精度电离层产品增强PPP-B2b定位性能分析. 武汉大学学报(信息科学版). 2024(09): 1517-1526 .
    8. 索世恒,韩昆,张永峰. 伽利略高精度服务产品与其全球定位性能评估. 地理空间信息. 2024(11): 100-104+121 .
    9. 孙爽,王敏,刘长建,孟欣,季锐. PPP-B2b服务钟差常数偏差特性及对定位的影响分析. 测绘科学. 2023(01): 8-15 .
    10. 郭文飞,朱萌萌,辜声峰,左鸿铭,陈金鑫. GNSS精密时频接收机时钟调控模型与参数设计方法. 武汉大学学报(信息科学版). 2023(07): 1126-1133 .
    11. 唐守普,吴文坛,夏振营,史进志,赵婉清,莫雁寒. 北斗三号PPP-B2b独立定位分析与应用. 河北省科学院学报. 2023(03): 61-69 .
    12. 赵淑洁,赵当丽,黄媛媛,纪元法. 基于PPP-B2b改正产品的北斗实时精密星历精度分析. 时间频率学报. 2023(02): 141-149 .
    13. 张润芝,何在民,马红皎,武建锋,广伟,肖恭伟. 北斗三号PPP-B2b信号跟踪环路的极点分布法设计. 时间频率学报. 2023(02): 161-169 .
    14. 姚夏,李志敏,吴如楠,毛飞宇,龚晓鹏. 北斗三号PPP-B2b信号时间同步性能分析. 导航定位学报. 2023(04): 84-89 .
    15. 史俊波,董新莹,欧阳晨皓,彭文杰,姚宜斌. 基于北斗三号PPP服务的快速静态和低动态定位性能分析. 大地测量与地球动力学. 2023(10): 997-1002 .
    16. 韩晓红,孙保琪,张喆,周红源,杨海彦,赵当丽,杨旭海. 基于北斗三号PPP-B2b轨道的实时精密共视时间传递. 导航定位与授时. 2023(04): 103-111 .
    17. 肖鹏,孙付平,张伦东,肖凯,商向永. 北斗三号PPP-B2b服务实时动态定位性能分析. 导航定位学报. 2023(05): 21-28 .
    18. 刘杨,曾安敏,郑翠娥,江鹏,刘焱雄. 广播式远程精密水下导航定位技术. 哈尔滨工程大学学报. 2023(11): 1987-1995 .
    19. 王林伟,周长江,余海锋,岳彩亚. 全球精密单点定位性能评估. 导航定位与授时. 2023(06): 86-92 .
    20. 赵泉涌,潘树国,缪巍巍,沈超,高旺,赵庆. PPP-B2b常数偏差实时改正后的多频单历元定位. 测绘科学. 2023(11): 61-68 .
    21. 彭松,刘建坤,张云龙,常丹,孙兆辉. 基于北斗三号远程监测系统的公路岩质边坡开挖变形分析. 科学技术与工程. 2022(33): 14898-14906 .
    22. 余德荧,金际航,刘一,边少锋. 基于北斗三号PPP-B2b信号的海上精密定位试验分析. 海洋测绘. 2022(06): 51-55+64 .

    Other cited types(9)

Catalog

    Article views (1637) PDF downloads (364) Cited by(31)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return