WU Xiaoping, XU Hanqiu, JIANG Qiaoling. Cross-Comparison of GF-1, GF-2 and Landsat-8 OLI Sensor Data[J]. Geomatics and Information Science of Wuhan University, 2020, 45(1): 150-158. DOI: 10.13203/j.whugis20190084
Citation: WU Xiaoping, XU Hanqiu, JIANG Qiaoling. Cross-Comparison of GF-1, GF-2 and Landsat-8 OLI Sensor Data[J]. Geomatics and Information Science of Wuhan University, 2020, 45(1): 150-158. DOI: 10.13203/j.whugis20190084

Cross-Comparison of GF-1, GF-2 and Landsat-8 OLI Sensor Data

Funds: 

The National Key Research and Development Program of China 2016YFA0600302

Fund Program of Fujian Provincial Administration of Serveying, Mapping and Geoinformation 2017JX02

More Information
  • Author Bio:

    WU Xiaoping, master, specializes in remote sensing applications in environment and natural resources. E-mail: 442892858@qq.com

  • Corresponding author:

    XU Hanqiu, PhD,professor. E-mail: hxu@fzu.edu.cn

  • Received Date: May 14, 2019
  • Published Date: January 04, 2020
  • This paper aims at an analysis on the consistency of the top of atmosphere (TOA) reflectance among GF-1 PMS2, GF-2 PMS1 and Landsat-8 operational land imager(OLI) sensor data based on two synchronous image pairs. The result shows that TOA reflectance of GF-1 PMS2 and GF-2 PMS1 sensors has a high degree of agreement. Nevertheless, this paper also finds that TOA reflectance of either GF-1 PMS2 or GF-2 PMS1 data is less consistent with that of Landsat-8 OLI data, especially in the near-infrared band. In general, the rank of TOA reflectance in the blue, green and red bands of three sensors data is as follows:GF-2 PMS1 > GF-1 PMS2 > Landsat-8 OLI, while the relationship in the near-infrared band is:Landsat-8 OLI > GF-1 PMS2 > GF-2 PMS1. The coversion models among the three sensors data were obtained through regression analysis. The validation shows that the conversion equations can significantly reduce the difference in the near-infrared band among the three sensors. It is also found that when the image to be converted has similar land cover types and proportions with the image on which the conversion model was developed, the conversion accuracy can be improve.
  • [1]
    Popkin G. US Government Considers Charging for Popular Earth-Obeserving Data[OL]. https://www.nature.com/articles/d41586-018-04874-y?from=timeline&isappinstalled=0, 2018
    [2]
    徐涵秋, 张铁军, 李春华. ASTER与Landsat ETM+热红外传感器数据的比较研究[J].武汉大学学报·信息科学版, 2011, 38(8): 996-1 007 http://ch.whu.edu.cn/CN/abstract/abstract639.shtml

    Xu Hanqiu, Zhang Tiejun, Li Chunhua. Cross Comparison of Thermal Infrared Data Between ASTER and Landsat ETM+ Sensors[J]. Geomatics and Information Science of Wuhan University, 2011, 38(8): 996-1 007 http://ch.whu.edu.cn/CN/abstract/abstract639.shtml
    [3]
    Holden C E, Woodcock C E. An Analysis of Landsat 7 and Landsat 8 Underflight Data and the Implications for Time Series Investigations[J]. Remote Sensing of Environment, 2016, 185: 16-36 doi: 10.1016/j.rse.2016.02.052
    [4]
    孙元亨, 秦其明, 任华忠, 等. GF-4/PMS与GF-1/WFV两种传感器表观反射率及NDVI一致性分析[J].农业工程学报, 2017, 33(9): 167-173 http://www.cnki.com.cn/Article/CJFDTotal-NYGU201709021.htm

    Sun Yuanheng, Qin Qiming, Ren Huazhong, et al. Consistency Analysis of Surface Reflectance and NDVI Between GF-4/PMS and GF-1/WFV[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(9): 167-173 http://www.cnki.com.cn/Article/CJFDTotal-NYGU201709021.htm
    [5]
    徐涵秋, 刘智才, 郭燕滨. GF-1 PMS1与ZY-3 MUX传感器NDVI数据的对比分析[J].农业工程学报, 2016, 32(8): 148-154 http://d.old.wanfangdata.com.cn/Periodical/nygcxb201608021

    Xu Hanqiu, Liu Zhicai, Guo Yanbin. Comparison of NDVI Data Between GF-1 PMS1 and ZY-3 MUX Sensors[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(8): 148-154 http://d.old.wanfangdata.com.cn/Periodical/nygcxb201608021
    [6]
    Feng L, Li J, Gong W, et al. Radiometric Cross-Calibration of Gaofen-1 WFV Cameras Using Landsat-8 OLI Images: A Solution for Large View Angle Associated Problems[J]. Remote Sensing of Environment, 2016, 174: 56-68 doi: 10.1016/j.rse.2015.11.031
    [7]
    张志杰, 张浩, 常玉光, 等. Landsat系列卫星光学遥感器辐射定标方法综述[J].遥感学报, 2015, 19(5): 719-732 http://d.old.wanfangdata.com.cn/Periodical/ygxb201505002

    Zhang Zhijie, Zhang Hao, Chang Yuguang, et al. Review of Radiometric Calibration Methods of Landsat Series Optical Remote Sensors[J]. Journal of Remote Sensing, 2015, 19(5): 719-732 http://d.old.wanfangdata.com.cn/Periodical/ygxb201505002
    [8]
    杨红艳, 李家国, 朱利, 等.基于历史数据的HJ-1B/IRS热红外通道定标与分析[J].红外与激光工程, 2016, 45(3): 55-59

    Yang Hongyan, Li Jiaguo, Zhu Li, et al. Calibaration and Analysis of HJ-1B/IRS Thermal Infrared Channel Based on the Historical Data[J]. Infrared and Laser Engineering, 2016, 45(3): 55-59
    [9]
    徐涵秋.基于影像的Landsat TM/ETM+数据正规化技术[J].武汉大学学报·信息科学版, 2007, 32(1): 62-66 http://ch.whu.edu.cn/CN/abstract/abstract1800.shtml

    Xu Hanqiu. Image Based Normalization Technique Used for Landsat TM/ETM+ Imagery[J]. Geomatics and Information Science of Wuhan University, 2007, 32(1): 62-66 http://ch.whu.edu.cn/CN/abstract/abstract1800.shtml
    [10]
    Teillet P M, Barker J L, Markham B L, et al. Radiometric Cross-Calibration of the Landsat-7 ETM+ and Landsat-5 TM Sensors Based on Tandem Data Sets[J]. Remote Sensing of Environment, 2001, 78: 29-54
    [11]
    徐涵秋.新型Landsat 8卫星影像的反射率和地表温度反演[J].地球物理学报, 2015, 58(3): 741-747 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxb201503004

    Xu Hanqiu. Retrieval of the Reflectance and Land Surface Temperature of the Newly-Launched Landsat 8 Satellite[J]. Chinese Journal of Geophysics, 2015, 58(3): 741-747 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxb201503004
    [12]
    Chander G, Coan M J, Scaramuzza P L. Evaluation and Comparison of the IRS-P6 and the Landsat Sensors[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(1): 209-221 doi: 10.1109/TGRS.2007.907426
    [13]
    徐建华.计量地理学[M].北京:高等教育出版社, 2014

    Xu Jianhua. Quantity Geography[M]. Beijing: Higher Education Press, 2014
    [14]
    Flood N. Continuity of Reflectance Data Between Landsat-7 ETM+ and Landsat-8 OLI, for Both Top-of-Atmosphere and Surface Reflectance: A Study in Australian Landscape[J]. Remote Sensing, 2014, 6(9): 7 952-7 970 doi: 10.3390/rs6097952
    [15]
    徐涵秋, 唐菲.新一代Landsat系列卫星:Landsat 8遥感影像新增特征及其生态环境意义[J].生态学报, 2013, 33(11):3 249-3 257 http://d.old.wanfangdata.com.cn/Periodical/stxb201311001

    Xu Hanqiu, Tang Fei.Analysis of New Characteristics of the First Landsat 8 Image and Their Eco-Environmental Significance[J]. Acta Ecologica Sinica, 2013, 33(11): 3 249-3 257 http://d.old.wanfangdata.com.cn/Periodical/stxb201311001
    [16]
    Jacob F, Petitcolin F, Schmugge T, et al. Comparison of Land Surface Emissivity and Radiometric Temperature Derived from MODIS and ASTER Sensors[J]. Remote Sensing of Environment, 2004, 90: 137-152 doi: 10.1016/j.rse.2003.11.015
  • Related Articles

    [1]WEI Erhu, LIU Xuexi, WANG Lingxuan, LIU Jingnan. Analysis and Assessment of BDS/GPS Combined Precise Point Positioning Accuracy[J]. Geomatics and Information Science of Wuhan University, 2018, 43(11): 1654-1660. DOI: 10.13203/j.whugis20160568
    [2]SHU Bao, LIU Hui, ZHANG Jinsheng, PAN Guofu, JIANG Jun. Performance Assessment of Partial Ambiguity Resolution Based on BDS/GPS Combined Positioning[J]. Geomatics and Information Science of Wuhan University, 2017, 42(7): 989-994, 1001. DOI: 10.13203/j.whugis20150017
    [3]ZHANG Rui, YANG Yuanxi, ZHANG Qin, HUANG Guanwen, WANG Le, YAN Xingyuan, QU Wei. Contribution Analysis of BDS/GPS Combined Orbit Determination[J]. Geomatics and Information Science of Wuhan University, 2017, 42(5): 600-608. DOI: 10.13203/j.whugis20150081
    [4]SUI Xin, SHI Chuang, LI Min, XU Zongqiu, XU Aigong. Impact Analysis of GPS/BDS Combined Positioning on Ambiguity Search Region for Short Baseline[J]. Geomatics and Information Science of Wuhan University, 2016, 41(10): 1372-1378. DOI: 10.13203/j.whugis20150479
    [5]GAO Xiao, DAI Wujiao, LI Shijia. Interior Performance Test of High Precision GPS/BDS Compatible Receivers[J]. Geomatics and Information Science of Wuhan University, 2015, 40(6): 795-799. DOI: 10.13203/j.whugis20130459
    [6]Dongmei, XU Houze. Determination of Geoid Using GPS Leveling and Gravity Data[J]. Geomatics and Information Science of Wuhan University, 2011, 36(5): 621-624.
    [7]LI Yihe, SHEN Yunzhong. Impact of Temporal Correlation of GPS Observations on Baseline Solution[J]. Geomatics and Information Science of Wuhan University, 2011, 36(4): 427-430.
    [8]XIONG Yongliang, HUANG Dingfa, XU Shaoguang, LIAO Hua. Long Distance Kinematic GPS Data Processing and Kinematic Crustal Deformation Features Analysis of Wenchuan Earthquake[J]. Geomatics and Information Science of Wuhan University, 2010, 35(3): 265-269.
    [9]ZENG Xuping. GPS Data Processing of Landslide Vertical Deformation Monitoring[J]. Geomatics and Information Science of Wuhan University, 2004, 29(3): 201-204.
    [10]JIANG Weiping, LIU Jingnan, YE Shirong. The Systematical Error Analysis of Baseline Processing in GPS Network[J]. Geomatics and Information Science of Wuhan University, 2001, 26(3): 196-199,238.
  • Cited by

    Periodical cited type(8)

    1. 翟高鹏,李文彬,薛新春,何杰. 空间直角坐标分量中误差转换到相邻点基线分量中误差的算法设计与实现. 测绘与空间地理信息. 2024(02): 204-206+210 .
    2. 张亮亮,李亚泽,熊磊,杨鹏飞,闵恒良. “北斗云”——电力时空大数据云平台技术与应用研究. 西部资源. 2023(02): 189-192 .
    3. 伏明星,李仲勤,张瑞鹏. 宝兰高铁某标段CPI复测数据处理与稳定性分析. 测绘地理信息. 2021(06): 40-45 .
    4. 刘洋洋,党亚民,许长辉. 基于GAMIT对国家GNSS基准站进行的北斗基线解算分析. 测绘工程. 2019(03): 25-29 .
    5. 张波. 北斗卫星导航系统用于高精度工程控制网建立的可行性分析. 北京测绘. 2019(07): 792-796 .
    6. 白正伟,张勤,黄观文,景策,王家兴. “轻终端+行业云”的实时北斗滑坡监测技术. 测绘学报. 2019(11): 1424-1429 .
    7. 闫子耀. 基于北斗系统的船舶导航系统定位精度研究. 中国水运(下半月). 2018(07): 49-50 .
    8. 闫子耀. 基于北斗系统的船舶导航系统定位精度研究. 中国水运(下半月). 2018(14): 49-50 .

    Other cited types(1)

Catalog

    Article views (2586) PDF downloads (257) Cited by(9)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return