YE Taoyan, LI Li, YAO Yanming, XIA Yuezhang, GUAN Weibing. Inter-Annual Variability of the Turbidity Maximum Zone in Hangzhou Bay Based on Landsat Imagery[J]. Geomatics and Information Science of Wuhan University, 2019, 44(9): 1377-1384. DOI: 10.13203/j.whugis20170346
Citation: YE Taoyan, LI Li, YAO Yanming, XIA Yuezhang, GUAN Weibing. Inter-Annual Variability of the Turbidity Maximum Zone in Hangzhou Bay Based on Landsat Imagery[J]. Geomatics and Information Science of Wuhan University, 2019, 44(9): 1377-1384. DOI: 10.13203/j.whugis20170346

Inter-Annual Variability of the Turbidity Maximum Zone in Hangzhou Bay Based on Landsat Imagery

Funds: 

The National Key Research and Development Program of China 2016YFC1401202

the National Natural Science Foundation of China 41606103

the National Natural Science Foundation of China 171101179

the Bureau of Science and Technology of Zhoushan 2018C81036

More Information
  • Author Bio:

    YE Taoyan, postgraduate, specializes in the ocean color remote sensing. yety@zju.edu.cn

  • Corresponding author:

    XIA Yuezhang, PhD. E-mail: yzxia@zju.edu.cn

  • Received Date: July 18, 2018
  • Published Date: September 04, 2019
  • The areas of the turbidity maximum zone (TMZ) in Hangzhou Bay changed with the anthropogenic activities in the past several decades. Thirty Landsat images of the bay, covering the period from 1984 to 2015, were collected to examine the variation of the TMZ and surface suspended sediment concentration (SSC) in the bay. The surface SSC was retrieved from the Landsat images. The error between the retrieved SSC and the observed data was 23.3%. Then the TMZ areas were calculated using the remote sensing data. Results show that the SSC values had a more asymmetric distribution pattern from 1984 to 2015, with low turbid area increased, as shown by the coefficient of skewness. From 1984 to 2015, the SSC values decreased in almost the entire bay. The Luchaogang station in north shore witnessed the largest decrease of about 73%. The annual trend ratio of the TMZ areas was -4.57%, while the annual trend ratio of sediment load was -3.74%. Hence, the inter-annual variability of the TMZ areas is supposed to be affected by the combined effects of the reduction of the riverine sediment discharge, as well as the tidal flat reclamation around Hangzhou Bay.
  • [1]
    He X, Bai Y, Pan D, et al. Using Geostationary Satellite Ocean Color Data to Map the Diurnal Dynamics of Suspended Particulate Matter in Coastal Waters[J]. Remote Sensing of Environment, 2013, 133(12):225-239 http://cn.bing.com/academic/profile?id=31da635fe32f2429008790715dbda783&encoded=0&v=paper_preview&mkt=zh-cn
    [2]
    堵盘军.长江口及杭州湾泥沙输运研究[D].上海: 华东师范大学, 2007 http://cdmd.cnki.com.cn/Article/CDMD-10269-2008033448.htm

    Du Panjun. Sediment Transport Research in Yangtze Estuary and Hangzhou Bay[D]. Shanghai: East China Normal University, 2007 http://cdmd.cnki.com.cn/Article/CDMD-10269-2008033448.htm
    [3]
    Cheng Z, Wang X, Paull D, et al. Application of the Geostationary Ocean Color Imager to Mapping the Diurnal and Seasonal Variability of Surface Suspended Matter in a Macro-Tidal Estuary[J]. Remote Sensing, 2016, 8(3):244 doi: 10.3390/rs8030244
    [4]
    刘猛, 沈芳, 葛建忠, 等.静止轨道卫星观测杭州湾悬浮泥沙浓度的动态变化及动力分析[J].泥沙研究, 2013(1):7-13 doi: 10.3969/j.issn.0468-155X.2013.01.002

    Liu Meng, Shen Fang, Ge Jianzhong, et al. Diurnal Variation of Suspended Sediment Concentration in Hangzhou Bay from Geostationary Satellite Observation and Its Hydrodynamic Analysis[J]. Journal of Sediment Research, 2013(1):7-13 doi: 10.3969/j.issn.0468-155X.2013.01.002
    [5]
    Xie D F, Gao S, Wang Z B, et al. Numerical Modeling of Tidal Currents, Sediment Transport and Morphological Evolution in Hangzhou Bay, China[J]. International Journal of Sediment Research, 2013, 28(3):316-328 doi: 10.1016/S1001-6279(13)60042-6
    [6]
    Du P, Ding P, Hu K. Simulation of Three-Dimensional Cohesive Sediment Transport in Hangzhou Bay, China[J]. Acta Oceanologica Sinica, 2010, 29(2):98-106 doi: 10.1007/s13131-010-0028-9
    [7]
    Cai L, Tang D, Li C. An Investigation of Spatial Variation of Suspended Sediment Concentration Induced by a Bay Bridge Based on Landsat TM and OLI Data[J]. Advances in Space Research, 2015, 56(2):293-303 doi: 10.1016/j.asr.2015.04.015
    [8]
    王飞, 王珊珊, 王新, 等.杭州湾悬浮泥沙遥感反演与变化动力分析[J].华中师范大学学报(自然科学版), 2014, 48(1):112-116 http://d.old.wanfangdata.com.cn/Periodical/hzsfdxxb201401025

    Wang Fei, Wang Shanshan, Wang Xin, et al. Remote Sensing Retrieval and Dynamic Driving Force Analysis of Suspended Sediment in Hangzhou Bay[J]. Journal of Central China Normal University(Natural Sciences), 2014, 48(1):112-116 http://d.old.wanfangdata.com.cn/Periodical/hzsfdxxb201401025
    [9]
    Liu C, Sui J Y, He Y, et al. Changes in Runoff and Sediment Load from Major Chinese Rivers to the Pacific Ocean over the Period 1955-2010[J]. International Journal of Sediment Research, 2013, 28(4):486-495 doi: 10.1016/S1001-6279(14)60007-X
    [10]
    Chen S L, Zhang G A, Yang S L. Temporal and Spatial Changes of Suspended Sediment Concentration and Resuspension in the Yangtze River Estuary[J]. Journal of Geographical Sciences, 2003, 13(4):498-506 doi: 10.1007/BF02837889
    [11]
    花一明.杭州湾滩涂围垦及利用动态遥感监测研究[D].杭州: 浙江大学, 2016

    Hua Yiming. Study on the Expansion of Reclamation and Land Use Changes in Hangzhou Bay[D]. Hangzhou: Zhejiang University, 2016
    [12]
    鲁友鹏, 梁书秀, 孙昭晨, 等.杭州湾南岸岸线变化对水动力的影响累积效应[J].海洋环境科学, 2015, 34(3):384-390 http://d.old.wanfangdata.com.cn/Periodical/hyhjkx201503011

    Lu Youpeng, Liang Shuxiu, Sun Zhaochen, et al. Cumulative Effects of Topography Change on Waterway's Hydrodynamic Along the Southern Coast of Hangzhou Bay[J]. Marine Environmental Science, 2015, 34(3):384-390 http://d.old.wanfangdata.com.cn/Periodical/hyhjkx201503011
    [13]
    Xie D, Wang Z, Gao S, et al. Modeling the Tidal Channel Morphodynamics in a Macro-Tidal Embayment, Hangzhou Bay, China[J]. Continental Shelf Research, 2009, 29(15):1757-1767 doi: 10.1016/j.csr.2009.03.009
    [14]
    王珊珊, 韩曾萃.杭州湾庵东边滩现代发育特征分析[J].科技通报, 2014, 30(5):66-71 doi: 10.3969/j.issn.1001-7119.2014.05.012

    Wang Shanshan, Han Cengcui. The Modern Evolution Characteristic of Andong Shoal of Hangzhou Bay[J]. Bulletin of Science and Technology, 2014, 30(5):66-71 doi: 10.3969/j.issn.1001-7119.2014.05.012
    [15]
    倪勇强, 耿兆铨, 朱军政.杭州湾水动力特性研讨[J].水动力学研究与进展, 2003, 18(4):439-445 doi: 10.3969/j.issn.1000-4874.2003.04.009

    Ni Yongqiang, Geng Zhaoquan, Zhu Junzheng. Study on Characteristic of Hydrodynamics in Hangzhou Bay[J]. Chinese Journal of Hydrodynamics, 2003, 18(4):439-445 doi: 10.3969/j.issn.1000-4874.2003.04.009
    [16]
    余丹, 于之锋, 窦文洁, 等.杭州湾冬季表层水体悬浮泥沙质量浓度的逐时变异[J].杭州师范大学学报(自然科学版), 2014, 13(4):373-379 doi: 10.3969/j.issn.1674-232X.2014.04.009

    Yu Dan, Yu Zhifeng, Dou Wenjie, et al. Hourly Variability of Surface Suspended Sediment Concentration in Hangzhou Bay in Winter[J]. Journal of Hangzhou Normal University (Natural Science Edition), 2014, 13(4):373-379 doi: 10.3969/j.issn.1674-232X.2014.04.009
    [17]
    郝建亭, 杨武年, 李玉霞, 等.基于FLAASH的多光谱影像大气校正应用研究[J].遥感信息, 2008(1):78-81 doi: 10.3969/j.issn.1000-3177.2008.01.015

    Hao Jianting, Yang Wunian, Li Yuxia, et al. Atmospheric Correction of Multi-spectral Imagery Aster[J]. Remote Sensing Information, 2008(1):78-81 doi: 10.3969/j.issn.1000-3177.2008.01.015
    [18]
    刘王兵, 于之锋, 周斌, 等.杭州湾HJ CCD影像悬浮泥沙遥感定量反演[J].遥感学报, 2013, 17(4):905-918 http://d.old.wanfangdata.com.cn/Thesis/Y2405161

    Liu Wangbing, Yu Zhifeng, Zhou Bin, et al. Assessment of Suspended Sediment Concentration at the Hangzhou Bay Using HJ CCD Imagery[J]. Journal of Remote Sensing, 2013, 17(4):905-918 http://d.old.wanfangdata.com.cn/Thesis/Y2405161
    [19]
    宋立松, 陈武, 向卫华, 等.基于粗糙集的杭州湾含沙量遥感模型[J].水利学报, 2004, 35(5):58-63 doi: 10.3321/j.issn:0559-9350.2004.05.010

    Song Lisong, Chen Wu, Xiang Weihua, et al. Remote Sensing Model for Sediment Information of Hangzhou Bay Based on Rough Sets[J]. Journal of Hydraulic Engineering, 2004, 35(5):58-63 doi: 10.3321/j.issn:0559-9350.2004.05.010
    [20]
    Min J, Ryu J, Lee S, et al. Monitoring of Suspended Sediment Variation Using Landsat and MODIS in the Saemangeum Coastal Area of Korea[J]. Marine Pollution Bulletin, 2012, 64(2):382-390 doi: 10.1016/j.marpolbul.2011.10.025
    [21]
    Jiang X, Lu B, He Y. Response of the Turbidity Maximum Zone to Fluctuations in Sediment Discharge from River to Estuary in the Changjiang Estuary (China)[J]. Estuarine, Coastal and Shelf Science, 2013, 131:24-30 doi: 10.1016/j.ecss.2013.07.003
    [22]
    Yang Yunping, Li Yitian, Sun Zhaohua, et al. Suspended Sediment Load in the Turbidity Maximum Zone at the Yangtze River Estuary:The Trends and Causes[J]. Journal of Geographical Sciences, 2014, 24(1):129-142 doi: 10.1007/s11442-014-1077-3
    [23]
    左书华, 李蓓, 杨华.长江口南汇嘴海域表层悬浮泥沙分布和运动遥感分析[J].水道港口, 2010, 31(5):384-389 doi: 10.3969/j.issn.1005-8443.2010.05.021

    Zuo Shuhua, Li Bei, Yang Hua. Remote Sensing Analysis on Distribution and Movement of Surface Suspended Sediment in the Nanhuizui Tidal Flat, Yangtze Estuary[J]. Journal of Waterway and Harbor, 2010, 31(5):384-389 doi: 10.3969/j.issn.1005-8443.2010.05.021
    [24]
    黄广, 陈沈良, 张国安.南汇边滩水沙运动特性及其围涂工程影响[J].人民长江, 2007, 38(1):60-63 doi: 10.3969/j.issn.1001-4179.2007.01.023

    Huang Guang, Chen Shenliang, Zhang Guoan. Water and Sediment Characteristics of Nanhui Beach and the Influence of Beach Reclamation Works[J]. Yangtze River, 2007, 38(1):60-63 doi: 10.3969/j.issn.1001-4179.2007.01.023
    [25]
    Chen S. Seasonal, Neap-Spring Variation of Sediment Concentration in the Joint Area Between Yangtze Estuary and Hangzhou Bay[J]. Science in China Series B:Chemistry, 2001, 44(1):57-62 doi: 10.1007-BF02884809/
    [26]
    黎兵, 严学新, 何中发, 等.长江口水下地形演变对三峡水库蓄水的响应[J].科学通报, 2015, 60(18):1736-1745 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kxtb201518010

    Li Bing, Yan Xuexin, He Zhongfa, et al. Impacts of the Three Gorges Dam on the Bathymetric Evolution of the Yangtze River Estuary[J]. Chinese Science Bulletin, 2015, 60(18):1736-1745 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kxtb201518010
    [27]
    Chen B, Wang K. Suspended Sediment Transport in the Offshore Near Yangtze Estuary[J]. Journal of Hydrodynamics, 2008, 20(3):373-381 doi: 10.1016/S1001-6058(08)60070-0
    [28]
    Bao M, Bao X, Yu H, et al. Tidal Characteristics in the Wenzhou Offshore Waters and Changes Resulting from the Wenzhou Shoal Reclamation Project[J]. Journal of Ocean University of China, 2015, 14(6):931-940 doi: 10.1007/s11802-015-2498-z
    [29]
    郭聪, 孙志林, 郑浩磊, 等.河口冲淤对围垦的响应[J].浙江大学学报(工学版), 2016, 50(9):1791-1797 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zjdxxb-gx201609021

    Guo Cong, Sun Zhilin, Zheng Haolei, et al. Response of Estuarine Erosion and Deposition to Reclamation in Estuary[J]. Journal of Zhejiang University (Engineering Science), 2016, 50(9):1791-1797 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zjdxxb-gx201609021
    [30]
    Xie D F, Pan C H, Wu X G, et al. Local Human Activities Overwhelm Decreased Sediment Supply from the Changjiang River:Continued Rapid Accumulation in the Hangzhou Bay-Qiantang Estuary System[J]. Marine Geology, 2017, 392:66-77 doi: 10.1016/j.margeo.2017.08.013
    [31]
    Xie D F, Pan C H, Wu X G, et al. The Variations of Sediment Transport Patterns in the Outer Changjiang Estuary and Hangzhou Bay over the Last 30 Years[J]. Journal of Geophysical Research, 2017, 122(4):2999-3020 http://cn.bing.com/academic/profile?id=00fb9f881ada9ad6fbaa39e0b5982c2a&encoded=0&v=paper_preview&mkt=zh-cn
  • Related Articles

    [1]SONG Weiwei, SONG Qisheng, HE Qianqian, GONG Xiaopeng, GU Shengfeng. Analysis of PPP-B2b Positioning Performance Enhanced by High-Precision Ionospheric Products[J]. Geomatics and Information Science of Wuhan University, 2024, 49(9): 1517-1526. DOI: 10.13203/j.whugis20230030
    [2]ZHU Shaolin, YUE Dongjie, HE Lina, CHEN Jian, LIU Shengnan. BDS-2/BDS-3 Joint Triple-Frequency Precise Point Positioning Models and Bias Characteristic Analysis[J]. Geomatics and Information Science of Wuhan University, 2023, 48(12): 2049-2059. DOI: 10.13203/j.whugis20210273
    [3]ZHAO Qile, TAO Jun, GUO Jing, CHEN Guo, XU Xiaolong, ZHANG Qiang, ZHANG Gaojian, XU Shengyi, LI Junqiang. Wide-Area Instantaneous cm-Level Precise Point Positioning: Method and Service System[J]. Geomatics and Information Science of Wuhan University, 2023, 48(7): 1058-1069. DOI: 10.13203/j.whugis20230202
    [4]YAN Zhongbao, ZHANG Xiaohong. Partial Ambiguity Resolution Method and Results Analysis for GNSS Uncombined PPP[J]. Geomatics and Information Science of Wuhan University, 2022, 47(6): 979-989. DOI: 10.13203/j.whugis20220025
    [5]ZHANG Hui, HAO Jinming, LIU Weiping, ZHOU Rui, TIAN Yingguo. GPS/BDS Precise Point Positioning Model with Receiver DCB Parameters for Raw Observations[J]. Geomatics and Information Science of Wuhan University, 2019, 44(4): 495-500, 592. DOI: 10.13203/j.whugis20170119
    [6]ZHANG Xiaohong, LIU Gen, GUO Fei, LI Xin. Model Comparison and Performance Analysis of Triple-frequency BDS Precise Point Positioning[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12): 2124-2130. DOI: 10.13203/j.whugis20180078
    [7]ZHANG Xiaohong, CAI Shixiang, LI Xingxing, GUO Fei. Accuracy Analysis of Time and Frequency Transfer Based on Precise Point Positioning[J]. Geomatics and Information Science of Wuhan University, 2010, 35(3): 274-278.
    [8]ZHANG Xiaohong, GUO Fei, LI Xingxing, LIN Xiaojing. Study on Precise Point Positioning Based on Combined GPS and GLONASS[J]. Geomatics and Information Science of Wuhan University, 2010, 35(1): 9-12.
    [9]FU Jianhong, YUAN Xiuxiao. Influence of GPS Base Station on Accuracy of Positioning by Airborne Position and Orientation System[J]. Geomatics and Information Science of Wuhan University, 2007, 32(5): 398-401.
    [10]Huang Shengxiang, Zhang Yan. Estimation of Accuracy Indicators for GPS Relative Positioning[J]. Geomatics and Information Science of Wuhan University, 1997, 22(1): 47-50.
  • Cited by

    Periodical cited type(22)

    1. 肖斌宸,叶飞,叶险峰,曾翔强. 电离层和地形复杂区域北斗/GNSS实时PPP性能及大气分析. 数据与计算发展前沿(中英文). 2025(01): 108-118 .
    2. 侯诚,史俊波,苟劲松,郭际明,邹进贵. 多路径误差对BDS-3变形监测精度的影响. 大地测量与地球动力学. 2024(02): 128-133 .
    3. 邓陈喜,姜维,王剑,蔡伯根. 基于北斗3号PPP-B2b信号的实时精密单点定位方法研究. 铁道学报. 2024(02): 63-73 .
    4. 于合理,孙晓东,贾赞杰,武智佳,代桃高. 限制环境下的GNSS精密授时方法研究综述. 海洋测绘. 2024(02): 46-50 .
    5. 许扬胤,任夏,明锋. 北斗三号PPP-B2b信号精密单点定位服务可用性分析. 全球定位系统. 2024(03): 10-19 .
    6. 肖恭伟,卞逸驰,何在民,广伟,尹翔飞,张润芝. 北斗三号PPP-B2b差分码偏差对UPPP解算的影响. 西安邮电大学学报. 2024(02): 1-10 .
    7. 宋伟伟,宋啟晟,何倩倩,龚晓鹏,辜声峰. 高精度电离层产品增强PPP-B2b定位性能分析. 武汉大学学报(信息科学版). 2024(09): 1517-1526 .
    8. 索世恒,韩昆,张永峰. 伽利略高精度服务产品与其全球定位性能评估. 地理空间信息. 2024(11): 100-104+121 .
    9. 孙爽,王敏,刘长建,孟欣,季锐. PPP-B2b服务钟差常数偏差特性及对定位的影响分析. 测绘科学. 2023(01): 8-15 .
    10. 郭文飞,朱萌萌,辜声峰,左鸿铭,陈金鑫. GNSS精密时频接收机时钟调控模型与参数设计方法. 武汉大学学报(信息科学版). 2023(07): 1126-1133 .
    11. 唐守普,吴文坛,夏振营,史进志,赵婉清,莫雁寒. 北斗三号PPP-B2b独立定位分析与应用. 河北省科学院学报. 2023(03): 61-69 .
    12. 赵淑洁,赵当丽,黄媛媛,纪元法. 基于PPP-B2b改正产品的北斗实时精密星历精度分析. 时间频率学报. 2023(02): 141-149 .
    13. 张润芝,何在民,马红皎,武建锋,广伟,肖恭伟. 北斗三号PPP-B2b信号跟踪环路的极点分布法设计. 时间频率学报. 2023(02): 161-169 .
    14. 姚夏,李志敏,吴如楠,毛飞宇,龚晓鹏. 北斗三号PPP-B2b信号时间同步性能分析. 导航定位学报. 2023(04): 84-89 .
    15. 史俊波,董新莹,欧阳晨皓,彭文杰,姚宜斌. 基于北斗三号PPP服务的快速静态和低动态定位性能分析. 大地测量与地球动力学. 2023(10): 997-1002 .
    16. 韩晓红,孙保琪,张喆,周红源,杨海彦,赵当丽,杨旭海. 基于北斗三号PPP-B2b轨道的实时精密共视时间传递. 导航定位与授时. 2023(04): 103-111 .
    17. 肖鹏,孙付平,张伦东,肖凯,商向永. 北斗三号PPP-B2b服务实时动态定位性能分析. 导航定位学报. 2023(05): 21-28 .
    18. 刘杨,曾安敏,郑翠娥,江鹏,刘焱雄. 广播式远程精密水下导航定位技术. 哈尔滨工程大学学报. 2023(11): 1987-1995 .
    19. 王林伟,周长江,余海锋,岳彩亚. 全球精密单点定位性能评估. 导航定位与授时. 2023(06): 86-92 .
    20. 赵泉涌,潘树国,缪巍巍,沈超,高旺,赵庆. PPP-B2b常数偏差实时改正后的多频单历元定位. 测绘科学. 2023(11): 61-68 .
    21. 彭松,刘建坤,张云龙,常丹,孙兆辉. 基于北斗三号远程监测系统的公路岩质边坡开挖变形分析. 科学技术与工程. 2022(33): 14898-14906 .
    22. 余德荧,金际航,刘一,边少锋. 基于北斗三号PPP-B2b信号的海上精密定位试验分析. 海洋测绘. 2022(06): 51-55+64 .

    Other cited types(9)

Catalog

    Article views (2041) PDF downloads (128) Cited by(31)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return