Citation: | LUO Ling, MAO Dehua, ZHANG Bai, WANG Zongming, YANG Guang. Remote Sensing Estimation for Light Use Efficiency of Phragmites australis Based on Landsat OLI over Typical Wetlands[J]. Geomatics and Information Science of Wuhan University, 2020, 45(4): 524-533. DOI: 10.13203/j.whugis20180294 |
[1] |
Rocha A V, Goulden M L. Why is Marsh Productivity So High? New Insights from Eddy Covariance and Biomass Measurements in a Typha Marsh[J]. Agricultural and Forest Meteorology, 2009, 149(1):159-168 doi: 10.1016/j.agrformet.2008.07.010
|
[2] |
梅雪英, 张修峰.长江口典型湿地植被储碳、固碳功能研究——以崇明东滩芦苇带为例[J].中国生态农业学报, 2008, 16(2):269-272 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=stnyyj200802001
Mei Xueying, Zhang Xiufeng. Carbon Storage and Fixation by a Typical Wetland Vegetation in Changjiang River Estuary-A Case Study of Phragmites australis in East Beach of Chongming Island[J]. Chinese Journal of Eco-Agriculture, 2008, 16(2):269-272 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=stnyyj200802001
|
[3] |
吕国红, 周广胜, 周莉, 等.盘锦湿地芦苇群落土壤碱解氮及溶解性有机碳季节动态[J].气象与环境学报, 2006, 22(4):59-63 doi: 10.3969/j.issn.1673-503X.2006.04.011
Lü Guohong, Zhou Guangsheng, Zhou Li, et al. Seasonal Dynamics of Dissolved Organic Carbon and Available N in Panjin Reed Wetland[J]. Journal of Meteorology and Environment, 2006, 22(4):59-63 doi: 10.3969/j.issn.1673-503X.2006.04.011
|
[4] |
Gamon J A, Field C B, Bilger W, et al. Remote Sensing of the Xanthophyll Cycle and Chlorophyll Fluorescence in Sunflower Leaves and Canopies[J]. Oecologia, 1990, 85:1-7 doi: 10.1007/BF00317336
|
[5] |
王莉雯, 卫亚星.植被光能利用率高光谱遥感反演研究进展[J].测绘与空间地理信息, 2015, 38(6):15-22, 38 doi: 10.3969/j.issn.1672-5867.2015.06.006
Wang Liwen, Wei Yaxing. A Review on Inversion of Vegetation Light Use Efficiency by Hyper Spectral Remote Sensing[J]. Geomatics & Spatial Information Technology, 2015, 38(6):15-22, 38 doi: 10.3969/j.issn.1672-5867.2015.06.006
|
[6] |
Ruimy A, Saugier B, Dedieu G. Methodology for the Estimation of Terrestrial Net Primary Production from Remotely Sensed Data[J]. Journal of Geophysical Research:Atmospheres, 1994, 99(3):5263-5283 doi: 10.1029-93JD03221/
|
[7] |
Goetz S J, Prince S D. Remote Sensing of Net Primary Production in Boreal Forest Stands[J]. Agricultural and Forest Meteorology, 1996, 78(3):149-179 doi: 10.1139-cjfr-28-3-375/
|
[8] |
吕宪国.湿地科学研究进展及研究方向[J].中国科学院院刊, 2002, 17(3):170-172 doi: 10.3969/j.issn.1000-3045.2002.03.004
Lü Xianguo. A Review and Prospect for Wetland Science[J]. Bulletin of Chinese Academy of Sciences, 2002, 17(3):170-172 doi: 10.3969/j.issn.1000-3045.2002.03.004
|
[9] |
杨永兴.国际湿地科学研究的主要特点、进展与展望[J].地理科学进展, 2002(2):111-120 doi: 10.3969/j.issn.1007-6301.2002.02.003
Yang Yongxing. Main Characteristics, Progress and Prospect of International Wetland Science Research[J]. Progress in Geography, 2002(2):111-120 doi: 10.3969/j.issn.1007-6301.2002.02.003
|
[10] |
Dronova I, Gong P, Wang L. Object-Based Analysis and Change Detection of Major Wetland Cover Types and Their Classification Uncertainty During the Low Water Period at Poyang Lake, China[J]. Remote Sensing of Environment, 2015, 115(12):3220-3236 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c9813a15c725f4b1ee1e3f6b71ed3027
|
[11] |
Hu Y H, Lee H B, Scarpace F. Optimal Linear Spectral Unmixing[J]. IEEE Transactions on Geoscience and Remote Sensing, 1999, 37:639-644 doi: 10.1109/36.739139
|
[12] |
Liu H Q, Huete A R. A Feedback Based Modification of the NDVI to Minimize Canopy Background and Atmospheric Noise[J]. IEEE Transactions on Geoscience and Remote Sensing, 1995, 33:457-465 doi: 10.1109/TGRS.1995.8746027
|
[13] |
Huete A R. A Soil Adjusted Vegetation Index(SAVI)[J]. Remote Sensing of Environment, 1988, 25(3):295-309 doi: 10.1016/0034-4257(88)90106-X
|
[14] |
李延峰, 毛德华, 王宗明, 等.双台河口国家级自然保护区芦苇叶面积指数遥感反演与空间格局分析[J].湿地科学, 2014, 12(2):163-169 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=shidkx201402006
Li Yanfeng, Mao Dehua, Wang Zongming, et al. Remote Sensing Retrieval and Spatial Pattern Analysis of Leaf Area Index of Phragmites australis in Shuangtai Estuary National Nature Reserve[J]. Wetland Science, 2014, 12(2):163-169 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=shidkx201402006
|
[15] |
梁建平, 马大喜, 毛德华, 等.双台河口国际重要湿地芦苇湿地生物量遥感估算[J].国土资源遥感, 2016, 28(3):60-66 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gtzyyg201603010
Liang Jianping, Ma Daxi, Mao Dehua, et al. Remote Sensing Based Estimation of Phragmites australis Aboveground Biomass in Shuangtai Estuary National Nature Reserve[J]. Remote Sensing for Land and Resources, 2016, 28(3):60-66 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gtzyyg201603010
|
[16] |
Tian Y L, Luo L, Mao D H, et al. Using Landsat Images to Quantify Different Human Threats to the Shuangtai Estuary Site, China[J]. Ocean & Coastal Management, 2017, 135:56-64 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=9e4769bc36c26459c3f42dc7b6f96e50
|
[17] |
李凤秀, 张柏, 刘殿伟, 等.湿地小叶章叶绿素含量的高光谱遥感估算模型[J].生态学杂志, 2008, 27(7):1077-1083 http://d.old.wanfangdata.com.cn/Periodical/stxzz200807004
Li Fengxiu, Zhang Bai, Liu Dianwei, et al. Hyperspectral Remote Sensing Estimation Models for Chlorophylla Concentration of Calamagrostis Angustifolia[J]. Chinese Journal of Ecology, 2008, 27(7):1077-1083 http://d.old.wanfangdata.com.cn/Periodical/stxzz200807004
|
[18] |
岑奕, 张良培, 村松加奈子.纪伊半岛地区植被净初级生产力的遥感应用研究[J].武汉大学学报·信息科学版, 2008, 33(12):1221-1224 http://ch.whu.edu.cn/CN/Y2008/V33/I12/1221
Cen Yi, Zhang Liangpei, Kanako M. Net Primary Production Estimation in Kii Peninsula Using Terra/MODIS Data[J]. Geomatics and Information Science of Wuhan University, 2008, 33(12):1221-1224 http://ch.whu.edu.cn/CN/Y2008/V33/I12/1221
|
[19] |
Turner D P, Ritts W D, Cohen W B, et al. Scaling Gross Primary Production (GPP) over Boreal and Deciduous Forest Landscapes in Support of MODIS GPP Product Validation[J]. Remote Sensing of Environment, 2003, 88(3):256-270 doi: 10.1016/j.rse.2003.06.005
|
[20] |
Zhao M, Running S W, Nemani R R. Sensitivity of Moderate Resolution Imaging Spectroradiometer (MODIS)Terrestrial Primary Production to the Accuracy of Meteorological Reanalyses[J]. Journal of Geophysical Research, 2006, 111(G1):G01002 doi: 10.1029/2004JG000004
|
[21] |
Wu C Y, Niu Z. Modelling Light Use Efficiency Using Vegetation Index and Land Surface Temperature from MODIS in Harvard Forest[J]. International Journal of Remote Sensing, 2012, 33(7):2261-2276 doi: 10.1080/01431161.2011.608090
|
[22] |
Inoue Y, Peñuelas J, Miyata A, et al. Normalized Difference Spectral Indices for Estimating Photosynthetic Efficiency and Capacity at a Canopy Scale Derived from Hyperspectral and CO2 Flux Measurements in Rice[J]. Remote Sensing of Environment, 2008, 112(1):156-172 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=6030fbe87d3e54df71cbe6b216782881
|
[23] |
Nakaji T, Ide R, Takagi K, et al. Utility of Spectral Vegetation Indices for Estimation of Light Conversion Efficiency in Coniferous Forests in Japan[J]. Agricultural and Forest Meteorology, 2008, 148(5):776-787 doi: 10.1016/j.agrformet.2007.11.006
|
[24] |
Wu C Y, Niu Z, Gao S. The Potential of the Satellite Derived Green Chlorophyll Index for Estimating Midday Light Use Efficiency in Maize, Coniferous Forest and Grassland[J]. Ecological Indicators, 2012, 14(1):66-73 doi: 10.1016/j.ecolind.2011.08.018
|
[25] |
Wu C Y, Chen J M, Desai A R, et al. Remote Sensing of Canopy Light Use Efficiency in Temperature and Boreal Forest of North America Using MODIS Imagery[J]. Remote Sensing of Environment, 2012, 118:60-72 doi: 10.1016/j.rse.2011.11.012
|
[1] | CAI Xianhua, LIU Kaili, HU Zhuoliang, ZHANG Yuan. An Algorithm for Constructing Road Network Using Block Polygon Topology[J]. Geomatics and Information Science of Wuhan University, 2021, 46(8): 1170-1177. DOI: 10.13203/j.whugis20190348 |
[2] | YANG Wei, AI Tinghua. Extracting Arterial Road Polygon from OpenStreetMap Data Based on Delaunay Triangulation[J]. Geomatics and Information Science of Wuhan University, 2018, 43(11): 1725-1731. DOI: 10.13203/j.whugis20160294 |
[3] | ZHANG Hao, WU Fang, GONG Xianyong, XU Junkui, ZHANG Juntao. A Parallel Factor-Based Method of Arterial Two-Lane Roads Recognition[J]. Geomatics and Information Science of Wuhan University, 2017, 42(8): 1123-1130. DOI: 10.13203/j.whugis20150122 |
[4] | WANG Xiao, QIAN Haizhong, LIU Hailong, HE Haiwei, CHEN Jingnan. A Hierarchical and Iterative Road Network Matching Method by Using Road Classification[J]. Geomatics and Information Science of Wuhan University, 2016, 41(8): 1072-1078. DOI: 10.13203/j.whugis20140441 |
[5] | LIU Hailong, QIAN Haizhong, WANG Xiao, HE Haiwei. Road Networks Global Matching Method Using Analytical Hierarchy Process[J]. Geomatics and Information Science of Wuhan University, 2015, 40(5): 644-651. DOI: 10.13203/j.whugis20130350 |
[6] | LI Fei, LUAN Xuechen, YANG Bisheng, LI Qiuping. Automatic Topology Maintenance Approach for High-level Road Networks[J]. Geomatics and Information Science of Wuhan University, 2014, 39(6): 729-733. DOI: 10.13203/j.whugis20140115 |
[7] | LUAN Xuechen, YANG Bisheng, ZHANG Yunfei. Structural Hierarchy Analysis of Streets Based on Complex Network Theory[J]. Geomatics and Information Science of Wuhan University, 2012, 37(6): 728-732. |
[8] | LI Qingquan, ZENG Zhe, YANG Bisheng, LIBijun. Betweenness Centrality Analysis for Urban Road Networks[J]. Geomatics and Information Science of Wuhan University, 2010, 35(1): 37-41. |
[9] | ZHU Qing, LI Yuan. Review of Road Network Models[J]. Geomatics and Information Science of Wuhan University, 2007, 32(6): 471-476. |
[10] | DENG Hongyan, WU Fang, ZHAI Renjian. A Generalization Model of Road Networks Based on Genetic Algorithm[J]. Geomatics and Information Science of Wuhan University, 2006, 31(2): 164-167. |