LUO Ling, MAO Dehua, ZHANG Bai, WANG Zongming, YANG Guang. Remote Sensing Estimation for Light Use Efficiency of Phragmites australis Based on Landsat OLI over Typical Wetlands[J]. Geomatics and Information Science of Wuhan University, 2020, 45(4): 524-533. DOI: 10.13203/j.whugis20180294
Citation: LUO Ling, MAO Dehua, ZHANG Bai, WANG Zongming, YANG Guang. Remote Sensing Estimation for Light Use Efficiency of Phragmites australis Based on Landsat OLI over Typical Wetlands[J]. Geomatics and Information Science of Wuhan University, 2020, 45(4): 524-533. DOI: 10.13203/j.whugis20180294

Remote Sensing Estimation for Light Use Efficiency of Phragmites australis Based on Landsat OLI over Typical Wetlands

Funds: 

The National Natural Science Foundation of China 41771383

The National Natural Science Foundation of China 41671219

More Information
  • Author Bio:

    LUO Ling, PhD, specializes in the research on remote sensing of resource and environment.luoling@iga.ac.cn

  • Corresponding author:

    MAO Dehua, PhD, associate professor.maodehua@iga.ac.cn

  • Received Date: February 28, 2019
  • Published Date: April 04, 2020
  • As a key parameter in monitoring vegetation productivity by remote sensing driven model, rapid and accurate acquisition of vegetation light use efficiency (LUE) in large area has been a key problem. Selecting typical Phragmites australis wetland in Northeast China as study area, multitemporal Landsat OLI (operational land imager) image and the object-oriented classification method were used to extract Phragmites australis wetland. Based on the principle of vegetation physiology and ecology, the relationship among LUE, vegetation indexes and chlorophyll content was analyzed, the feasibility of accurate estimation of LUE for wetland vegetation by spectral vegetation index was discussed. Results show that areas of Phragmites australis wetland in Qixinghe Wetland, Chagan Lake Wetland and Shuangtai Estuary Wetland were 122.19, 75.29 and 439.61 km2, respectively, and overall classification accuracy was more than 82%. With the exception of EVI (enhanced vegetation index), other six vegetation indices showed the same spatial pattern characteristics with those of three wetlands. Totally, values of vegetation indices for different land covers were: cultivated land > Phragmites australis > other wetland vegetation > water body. There exists close relationship among LUE, chlorophyll and vegetation index. NDVI (normalized difference vegetation index) was most sensitive to LUE (P < 0.01;R2=0.62), which was the best one to characterize LUE of Phragmites australis in this study. This study verified the theoretical hypothesis that LUE could be inversed efficiently by remote sensing vegetation index taking chlorophyll as the intermediate variable, which can provide references for the study of vegetation productivity and carbon cycle on regional scale.
  • [1]
    Rocha A V, Goulden M L. Why is Marsh Productivity So High? New Insights from Eddy Covariance and Biomass Measurements in a Typha Marsh[J]. Agricultural and Forest Meteorology, 2009, 149(1):159-168 doi: 10.1016/j.agrformet.2008.07.010
    [2]
    梅雪英, 张修峰.长江口典型湿地植被储碳、固碳功能研究——以崇明东滩芦苇带为例[J].中国生态农业学报, 2008, 16(2):269-272 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=stnyyj200802001

    Mei Xueying, Zhang Xiufeng. Carbon Storage and Fixation by a Typical Wetland Vegetation in Changjiang River Estuary-A Case Study of Phragmites australis in East Beach of Chongming Island[J]. Chinese Journal of Eco-Agriculture, 2008, 16(2):269-272 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=stnyyj200802001
    [3]
    吕国红, 周广胜, 周莉, 等.盘锦湿地芦苇群落土壤碱解氮及溶解性有机碳季节动态[J].气象与环境学报, 2006, 22(4):59-63 doi: 10.3969/j.issn.1673-503X.2006.04.011

    Lü Guohong, Zhou Guangsheng, Zhou Li, et al. Seasonal Dynamics of Dissolved Organic Carbon and Available N in Panjin Reed Wetland[J]. Journal of Meteorology and Environment, 2006, 22(4):59-63 doi: 10.3969/j.issn.1673-503X.2006.04.011
    [4]
    Gamon J A, Field C B, Bilger W, et al. Remote Sensing of the Xanthophyll Cycle and Chlorophyll Fluorescence in Sunflower Leaves and Canopies[J]. Oecologia, 1990, 85:1-7 doi: 10.1007/BF00317336
    [5]
    王莉雯, 卫亚星.植被光能利用率高光谱遥感反演研究进展[J].测绘与空间地理信息, 2015, 38(6):15-22, 38 doi: 10.3969/j.issn.1672-5867.2015.06.006

    Wang Liwen, Wei Yaxing. A Review on Inversion of Vegetation Light Use Efficiency by Hyper Spectral Remote Sensing[J]. Geomatics & Spatial Information Technology, 2015, 38(6):15-22, 38 doi: 10.3969/j.issn.1672-5867.2015.06.006
    [6]
    Ruimy A, Saugier B, Dedieu G. Methodology for the Estimation of Terrestrial Net Primary Production from Remotely Sensed Data[J]. Journal of Geophysical Research:Atmospheres, 1994, 99(3):5263-5283 doi: 10.1029-93JD03221/
    [7]
    Goetz S J, Prince S D. Remote Sensing of Net Primary Production in Boreal Forest Stands[J]. Agricultural and Forest Meteorology, 1996, 78(3):149-179 doi: 10.1139-cjfr-28-3-375/
    [8]
    吕宪国.湿地科学研究进展及研究方向[J].中国科学院院刊, 2002, 17(3):170-172 doi: 10.3969/j.issn.1000-3045.2002.03.004

    Lü Xianguo. A Review and Prospect for Wetland Science[J]. Bulletin of Chinese Academy of Sciences, 2002, 17(3):170-172 doi: 10.3969/j.issn.1000-3045.2002.03.004
    [9]
    杨永兴.国际湿地科学研究的主要特点、进展与展望[J].地理科学进展, 2002(2):111-120 doi: 10.3969/j.issn.1007-6301.2002.02.003

    Yang Yongxing. Main Characteristics, Progress and Prospect of International Wetland Science Research[J]. Progress in Geography, 2002(2):111-120 doi: 10.3969/j.issn.1007-6301.2002.02.003
    [10]
    Dronova I, Gong P, Wang L. Object-Based Analysis and Change Detection of Major Wetland Cover Types and Their Classification Uncertainty During the Low Water Period at Poyang Lake, China[J]. Remote Sensing of Environment, 2015, 115(12):3220-3236 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c9813a15c725f4b1ee1e3f6b71ed3027
    [11]
    Hu Y H, Lee H B, Scarpace F. Optimal Linear Spectral Unmixing[J]. IEEE Transactions on Geoscience and Remote Sensing, 1999, 37:639-644 doi: 10.1109/36.739139
    [12]
    Liu H Q, Huete A R. A Feedback Based Modification of the NDVI to Minimize Canopy Background and Atmospheric Noise[J]. IEEE Transactions on Geoscience and Remote Sensing, 1995, 33:457-465 doi: 10.1109/TGRS.1995.8746027
    [13]
    Huete A R. A Soil Adjusted Vegetation Index(SAVI)[J]. Remote Sensing of Environment, 1988, 25(3):295-309 doi: 10.1016/0034-4257(88)90106-X
    [14]
    李延峰, 毛德华, 王宗明, 等.双台河口国家级自然保护区芦苇叶面积指数遥感反演与空间格局分析[J].湿地科学, 2014, 12(2):163-169 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=shidkx201402006

    Li Yanfeng, Mao Dehua, Wang Zongming, et al. Remote Sensing Retrieval and Spatial Pattern Analysis of Leaf Area Index of Phragmites australis in Shuangtai Estuary National Nature Reserve[J]. Wetland Science, 2014, 12(2):163-169 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=shidkx201402006
    [15]
    梁建平, 马大喜, 毛德华, 等.双台河口国际重要湿地芦苇湿地生物量遥感估算[J].国土资源遥感, 2016, 28(3):60-66 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gtzyyg201603010

    Liang Jianping, Ma Daxi, Mao Dehua, et al. Remote Sensing Based Estimation of Phragmites australis Aboveground Biomass in Shuangtai Estuary National Nature Reserve[J]. Remote Sensing for Land and Resources, 2016, 28(3):60-66 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gtzyyg201603010
    [16]
    Tian Y L, Luo L, Mao D H, et al. Using Landsat Images to Quantify Different Human Threats to the Shuangtai Estuary Site, China[J]. Ocean & Coastal Management, 2017, 135:56-64 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=9e4769bc36c26459c3f42dc7b6f96e50
    [17]
    李凤秀, 张柏, 刘殿伟, 等.湿地小叶章叶绿素含量的高光谱遥感估算模型[J].生态学杂志, 2008, 27(7):1077-1083 http://d.old.wanfangdata.com.cn/Periodical/stxzz200807004

    Li Fengxiu, Zhang Bai, Liu Dianwei, et al. Hyperspectral Remote Sensing Estimation Models for Chlorophylla Concentration of Calamagrostis Angustifolia[J]. Chinese Journal of Ecology, 2008, 27(7):1077-1083 http://d.old.wanfangdata.com.cn/Periodical/stxzz200807004
    [18]
    岑奕, 张良培, 村松加奈子.纪伊半岛地区植被净初级生产力的遥感应用研究[J].武汉大学学报·信息科学版, 2008, 33(12):1221-1224 http://ch.whu.edu.cn/CN/Y2008/V33/I12/1221

    Cen Yi, Zhang Liangpei, Kanako M. Net Primary Production Estimation in Kii Peninsula Using Terra/MODIS Data[J]. Geomatics and Information Science of Wuhan University, 2008, 33(12):1221-1224 http://ch.whu.edu.cn/CN/Y2008/V33/I12/1221
    [19]
    Turner D P, Ritts W D, Cohen W B, et al. Scaling Gross Primary Production (GPP) over Boreal and Deciduous Forest Landscapes in Support of MODIS GPP Product Validation[J]. Remote Sensing of Environment, 2003, 88(3):256-270 doi: 10.1016/j.rse.2003.06.005
    [20]
    Zhao M, Running S W, Nemani R R. Sensitivity of Moderate Resolution Imaging Spectroradiometer (MODIS)Terrestrial Primary Production to the Accuracy of Meteorological Reanalyses[J]. Journal of Geophysical Research, 2006, 111(G1):G01002 doi: 10.1029/2004JG000004
    [21]
    Wu C Y, Niu Z. Modelling Light Use Efficiency Using Vegetation Index and Land Surface Temperature from MODIS in Harvard Forest[J]. International Journal of Remote Sensing, 2012, 33(7):2261-2276 doi: 10.1080/01431161.2011.608090
    [22]
    Inoue Y, Peñuelas J, Miyata A, et al. Normalized Difference Spectral Indices for Estimating Photosynthetic Efficiency and Capacity at a Canopy Scale Derived from Hyperspectral and CO2 Flux Measurements in Rice[J]. Remote Sensing of Environment, 2008, 112(1):156-172 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=6030fbe87d3e54df71cbe6b216782881
    [23]
    Nakaji T, Ide R, Takagi K, et al. Utility of Spectral Vegetation Indices for Estimation of Light Conversion Efficiency in Coniferous Forests in Japan[J]. Agricultural and Forest Meteorology, 2008, 148(5):776-787 doi: 10.1016/j.agrformet.2007.11.006
    [24]
    Wu C Y, Niu Z, Gao S. The Potential of the Satellite Derived Green Chlorophyll Index for Estimating Midday Light Use Efficiency in Maize, Coniferous Forest and Grassland[J]. Ecological Indicators, 2012, 14(1):66-73 doi: 10.1016/j.ecolind.2011.08.018
    [25]
    Wu C Y, Chen J M, Desai A R, et al. Remote Sensing of Canopy Light Use Efficiency in Temperature and Boreal Forest of North America Using MODIS Imagery[J]. Remote Sensing of Environment, 2012, 118:60-72 doi: 10.1016/j.rse.2011.11.012
  • Related Articles

    [1]SONG Weiwei, SONG Qisheng, HE Qianqian, GONG Xiaopeng, GU Shengfeng. Analysis of PPP-B2b Positioning Performance Enhanced by High-Precision Ionospheric Products[J]. Geomatics and Information Science of Wuhan University, 2024, 49(9): 1517-1526. DOI: 10.13203/j.whugis20230030
    [2]ZHU Shaolin, YUE Dongjie, HE Lina, CHEN Jian, LIU Shengnan. BDS-2/BDS-3 Joint Triple-Frequency Precise Point Positioning Models and Bias Characteristic Analysis[J]. Geomatics and Information Science of Wuhan University, 2023, 48(12): 2049-2059. DOI: 10.13203/j.whugis20210273
    [3]ZHAO Qile, TAO Jun, GUO Jing, CHEN Guo, XU Xiaolong, ZHANG Qiang, ZHANG Gaojian, XU Shengyi, LI Junqiang. Wide-Area Instantaneous cm-Level Precise Point Positioning: Method and Service System[J]. Geomatics and Information Science of Wuhan University, 2023, 48(7): 1058-1069. DOI: 10.13203/j.whugis20230202
    [4]YAN Zhongbao, ZHANG Xiaohong. Partial Ambiguity Resolution Method and Results Analysis for GNSS Uncombined PPP[J]. Geomatics and Information Science of Wuhan University, 2022, 47(6): 979-989. DOI: 10.13203/j.whugis20220025
    [5]ZHANG Hui, HAO Jinming, LIU Weiping, ZHOU Rui, TIAN Yingguo. GPS/BDS Precise Point Positioning Model with Receiver DCB Parameters for Raw Observations[J]. Geomatics and Information Science of Wuhan University, 2019, 44(4): 495-500, 592. DOI: 10.13203/j.whugis20170119
    [6]ZHANG Xiaohong, LIU Gen, GUO Fei, LI Xin. Model Comparison and Performance Analysis of Triple-frequency BDS Precise Point Positioning[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12): 2124-2130. DOI: 10.13203/j.whugis20180078
    [7]ZHANG Xiaohong, CAI Shixiang, LI Xingxing, GUO Fei. Accuracy Analysis of Time and Frequency Transfer Based on Precise Point Positioning[J]. Geomatics and Information Science of Wuhan University, 2010, 35(3): 274-278.
    [8]ZHANG Xiaohong, GUO Fei, LI Xingxing, LIN Xiaojing. Study on Precise Point Positioning Based on Combined GPS and GLONASS[J]. Geomatics and Information Science of Wuhan University, 2010, 35(1): 9-12.
    [9]FU Jianhong, YUAN Xiuxiao. Influence of GPS Base Station on Accuracy of Positioning by Airborne Position and Orientation System[J]. Geomatics and Information Science of Wuhan University, 2007, 32(5): 398-401.
    [10]Huang Shengxiang, Zhang Yan. Estimation of Accuracy Indicators for GPS Relative Positioning[J]. Geomatics and Information Science of Wuhan University, 1997, 22(1): 47-50.
  • Cited by

    Periodical cited type(22)

    1. 肖斌宸,叶飞,叶险峰,曾翔强. 电离层和地形复杂区域北斗/GNSS实时PPP性能及大气分析. 数据与计算发展前沿(中英文). 2025(01): 108-118 .
    2. 侯诚,史俊波,苟劲松,郭际明,邹进贵. 多路径误差对BDS-3变形监测精度的影响. 大地测量与地球动力学. 2024(02): 128-133 .
    3. 邓陈喜,姜维,王剑,蔡伯根. 基于北斗3号PPP-B2b信号的实时精密单点定位方法研究. 铁道学报. 2024(02): 63-73 .
    4. 于合理,孙晓东,贾赞杰,武智佳,代桃高. 限制环境下的GNSS精密授时方法研究综述. 海洋测绘. 2024(02): 46-50 .
    5. 许扬胤,任夏,明锋. 北斗三号PPP-B2b信号精密单点定位服务可用性分析. 全球定位系统. 2024(03): 10-19 .
    6. 肖恭伟,卞逸驰,何在民,广伟,尹翔飞,张润芝. 北斗三号PPP-B2b差分码偏差对UPPP解算的影响. 西安邮电大学学报. 2024(02): 1-10 .
    7. 宋伟伟,宋啟晟,何倩倩,龚晓鹏,辜声峰. 高精度电离层产品增强PPP-B2b定位性能分析. 武汉大学学报(信息科学版). 2024(09): 1517-1526 .
    8. 索世恒,韩昆,张永峰. 伽利略高精度服务产品与其全球定位性能评估. 地理空间信息. 2024(11): 100-104+121 .
    9. 孙爽,王敏,刘长建,孟欣,季锐. PPP-B2b服务钟差常数偏差特性及对定位的影响分析. 测绘科学. 2023(01): 8-15 .
    10. 郭文飞,朱萌萌,辜声峰,左鸿铭,陈金鑫. GNSS精密时频接收机时钟调控模型与参数设计方法. 武汉大学学报(信息科学版). 2023(07): 1126-1133 .
    11. 唐守普,吴文坛,夏振营,史进志,赵婉清,莫雁寒. 北斗三号PPP-B2b独立定位分析与应用. 河北省科学院学报. 2023(03): 61-69 .
    12. 赵淑洁,赵当丽,黄媛媛,纪元法. 基于PPP-B2b改正产品的北斗实时精密星历精度分析. 时间频率学报. 2023(02): 141-149 .
    13. 张润芝,何在民,马红皎,武建锋,广伟,肖恭伟. 北斗三号PPP-B2b信号跟踪环路的极点分布法设计. 时间频率学报. 2023(02): 161-169 .
    14. 姚夏,李志敏,吴如楠,毛飞宇,龚晓鹏. 北斗三号PPP-B2b信号时间同步性能分析. 导航定位学报. 2023(04): 84-89 .
    15. 史俊波,董新莹,欧阳晨皓,彭文杰,姚宜斌. 基于北斗三号PPP服务的快速静态和低动态定位性能分析. 大地测量与地球动力学. 2023(10): 997-1002 .
    16. 韩晓红,孙保琪,张喆,周红源,杨海彦,赵当丽,杨旭海. 基于北斗三号PPP-B2b轨道的实时精密共视时间传递. 导航定位与授时. 2023(04): 103-111 .
    17. 肖鹏,孙付平,张伦东,肖凯,商向永. 北斗三号PPP-B2b服务实时动态定位性能分析. 导航定位学报. 2023(05): 21-28 .
    18. 刘杨,曾安敏,郑翠娥,江鹏,刘焱雄. 广播式远程精密水下导航定位技术. 哈尔滨工程大学学报. 2023(11): 1987-1995 .
    19. 王林伟,周长江,余海锋,岳彩亚. 全球精密单点定位性能评估. 导航定位与授时. 2023(06): 86-92 .
    20. 赵泉涌,潘树国,缪巍巍,沈超,高旺,赵庆. PPP-B2b常数偏差实时改正后的多频单历元定位. 测绘科学. 2023(11): 61-68 .
    21. 彭松,刘建坤,张云龙,常丹,孙兆辉. 基于北斗三号远程监测系统的公路岩质边坡开挖变形分析. 科学技术与工程. 2022(33): 14898-14906 .
    22. 余德荧,金际航,刘一,边少锋. 基于北斗三号PPP-B2b信号的海上精密定位试验分析. 海洋测绘. 2022(06): 51-55+64 .

    Other cited types(9)

Catalog

    Article views (1471) PDF downloads (63) Cited by(31)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return