LU Chunyan, WANG Zongming, JIA Mingming, ZHANG Jing, MAN Weidong, MAO Dehua. Peatland Extraction Based on ENVISAT ASAR, Landsat TM and DEM Data[J]. Geomatics and Information Science of Wuhan University, 2017, 42(2): 185-192. DOI: 10.13203/j.whugis20140669
Citation: LU Chunyan, WANG Zongming, JIA Mingming, ZHANG Jing, MAN Weidong, MAO Dehua. Peatland Extraction Based on ENVISAT ASAR, Landsat TM and DEM Data[J]. Geomatics and Information Science of Wuhan University, 2017, 42(2): 185-192. DOI: 10.13203/j.whugis20140669

Peatland Extraction Based on ENVISAT ASAR, Landsat TM and DEM Data

Funds: 

The National Natural Science Foundation of China Nos.41671219, 41371403, 41401502

More Information
  • Author Bio:

    LU Chunyan, PhD, lecturer, specializes in remote sensing of environment and spatial information statistics. E-mail: suzi26@163.com

  • Corresponding author:

    WANG Zongming, PhD, professor. E-mail:zongmingwang@iga.ac.cn

  • Received Date: February 25, 2015
  • Published Date: February 04, 2017
  • Peatlands are one of the most important types of wetlands and significant to the balance of global change and ecosystems. On the basis of field investigation and backscatter coefficient comparison of different land cover types in different polarization radar images, ENVISAT ASAR, Landsat TM, and DEM data were taken as basic data for a classification method combining object-oriented and decision tree approaches that were to extract peatlands and adjacent land cover types in a typical peatland zone located in West Xiao-Xing'an Mountains. The overall classification accuracy was 93.54% with a Kappa coefficient of 0.92, which indicates that the proposed method used is effective for peatland extraction. Compared to previous work, there is some improvement in classification accuracy.
  • [1]
    Ozesmi S L, Bauer M E. Satellite Remote Sensing of Wetlands[J]. Wetlands Ecology and Management, 2002,5:381-402 http://cn.bing.com/academic/profile?id=bcaa03b6e6ced732d621ae25e60ac840&encoded=0&v=paper_preview&mkt=zh-cn
    [2]
    Gorham E. Northern Peatlands:Role in the Carbon Cycle and Probable Responses to Climatic Warming[J]. Ecological Applications, 1991, 1:182-195 doi: 10.2307/1941811
    [3]
    张柏. 遥感技术在中国湿地研究中的应用[J]. 遥感技术与应用, 1996, 11(1):67-71 http://www.cnki.com.cn/Article/CJFDTOTAL-YGJS601.010.htm

    Zhang Bai. Application of Remote Sensing Technology on Research of the Wetland in China[J]. Remote Sensing Technology and Application, 1996, 11(1):67-71 http://www.cnki.com.cn/Article/CJFDTOTAL-YGJS601.010.htm
    [4]
    Nguyen L D, Viet P B, Minh N T, et al. Change Detection of Land Use and Riverbank in Mekong Delta, Vietnam Using Time Series Remotely Sensed Data[J]. Journal of Resources and Ecology, 2011, 2(4):370-374 http://cn.bing.com/academic/profile?id=befa7edb68214c54de7c204816d0d940&encoded=0&v=paper_preview&mkt=zh-cn
    [5]
    王莉雯, 卫亚星. 湿地生态系统雷达遥感监测研究进展[J]. 地理科学进展, 2011, 30(9):1107-1117 http://www.cnki.com.cn/Article/CJFDTOTAL-DLKJ201109007.htm

    Wang Liwen, Wei Yaxing. Progress in Monitoring Wetland Ecosystems by Radar Remote Sensing[J]. Progress in Geography, 2011, 30(9):1107-1117 http://www.cnki.com.cn/Article/CJFDTOTAL-DLKJ201109007.htm
    [6]
    Kasischke E, Melack J, Dobson M. The Use of Imaging Radars for Ecological Applications:A Review[J]. Remote Sensing of Environment, 1997, 59(2):141-156 doi: 10.1016/S0034-4257(96)00148-4
    [7]
    Page S, Hoscilo A, Langner A, et al. Tropical Peatland Fires in Southeast Asia[M]//Mark A C. Tropical Fire Ecology. New York:Springer, 2009
    [8]
    Keddy P A. Wetland Ecology:Principles and Conservation[M]. Cambridge:Cambridge University Press, 2010
    [9]
    卜兆君, 王升忠, 谢宗航. 泥炭沼泽学若干基本概念的再认识[J]. 东北师大学报(自然科学版), 2005, 37(2):105-110 http://www.cnki.com.cn/Article/CJFDTOTAL-DBSZ200502024.htm

    Pu Zhaojun, Wang Shengzhong, Xie Zonghang. Re-understanding Some Elementary Concepts in Mire Science[J]. Journal of Northeast Normal University, 2005, 37(2):105-110 http://www.cnki.com.cn/Article/CJFDTOTAL-DBSZ200502024.htm
    [10]
    Rydin H, Jeglum J K. The Biology of Peatlands[M]. New York:Oxford University Press, 2010
    [11]
    董彦芳,庞勇,孙国清, 等. ENVISAT ASAR数据用于水稻监测和参数反演[J]. 武汉大学学报·信息科学版, 2006, 31(2):124-127 http://ch.whu.edu.cn/CN/abstract/abstract2384.shtml

    Dong Yanfang, Pang Yong, Sun Guoqing, et al. Rice Growth Monitoring Using ENVISAT ASAR Data[J]. Geomatics and Information Science of Wuhan University, 2006, 31(2):124-127 http://ch.whu.edu.cn/CN/abstract/abstract2384.shtml
    [12]
    徐怡波, 赖锡军, 周春国. 基于ENVISAT ASAR数据的东洞庭湖湿地植被遥感监测研究[J]. 长江流域资源与环境, 2010, (4):452-459 http://www.cnki.com.cn/Article/CJFDTOTAL-CJLY201004019.htm

    Xu Yibo, Lai Xijun, Zhou Chunguo. Study on the Remote Sensing Monitoring of Wetland Vegetation in East Dongting Lake using ENVISAT ASAR data[J]. Resources and Environment in the Yangtze Basin, 2010, (4):452-459 http://www.cnki.com.cn/Article/CJFDTOTAL-CJLY201004019.htm
    [13]
    贾明明, 王宗明, 张柏, 等. 综合环境卫星与MODIS数据的面向对象土地覆盖分类方法[J]. 武汉大学学报·信息科学版, 2014, 39(3):305-310 http://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201403012.htm

    Jia Mingming, Wang Zongming, Zhang Bai, et al. Land Cover Classification of Compositing HJ-1 and MODIS Data Based on Object-based Method[J]. Geomatics and Information Science of Wuhan University, 2014, 39(3):305-310 http://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201403012.htm
    [14]
    黄慧萍. 面向对象影像分析中的尺度问题研究[D]. 北京:中国科学院研究生院, 2003

    Huang Huiping. Scale Issues in Object-oriented Image Analysis[D]. Beijing:Graduate School of Chinese Academy of Sciences, 2003
    [15]
    杨存建,周成虎.TM影像的居民地信息提取方法研究[J]. 遥感学报, 2000, 4(2):146-150 http://www.cnki.com.cn/Article/CJFDTOTAL-YGXB200002011.htm

    Yang Cunjian, Zhou Chenghu. Extracting Residential Areas on the TM Imagery[J]. Journal of Remote Sensing, 2000, 4(2):146-150 http://www.cnki.com.cn/Article/CJFDTOTAL-YGXB200002011.htm
    [16]
    Li J H, Chen W J. A Rule-based Method for Mapping Canada's Wetlands Using Optical, Radar and DEM Data[J]. International Journal of Remote Sensing, 2012, 26(22):5051-5069 http://cn.bing.com/academic/profile?id=bd822a6b391afb40920247833da7c027&encoded=0&v=paper_preview&mkt=zh-cn
    [17]
    李爽, 张二勋. 基于决策树的遥感影像分类方法研究[J]. 地域研究与开发, 2003, 22(1):17-21 http://www.cnki.com.cn/Article/CJFDTOTAL-DYYY200301004.htm

    Li Shuang, Zhang Erxun. The Decision Tree Classification and Its Application in Land Cover[J]. Areal Research and Development, 2003, 22(1):17-21 http://www.cnki.com.cn/Article/CJFDTOTAL-DYYY200301004.htm
    [18]
    Haapanen R, Tokola T. Creating a Digital Treeless Peatland Map Using Satellite Image Interpretation[J]. Scandinavian Journal of Forest Research, 2007, 22(1):48-59 doi: 10.1080/02827580601168410
    [19]
    Jaenicke J, Englhart S, Siegert F. Monitoring the Effect of Restoration Measures in Indonesian Peatlands by Radar Satellite Imagery[J]. Journal of Environmental Management, 2011, 92:630-638 doi: 10.1016/j.jenvman.2010.09.029
  • Related Articles

    [1]SONG Weiwei, SONG Qisheng, HE Qianqian, GONG Xiaopeng, GU Shengfeng. Analysis of PPP-B2b Positioning Performance Enhanced by High-Precision Ionospheric Products[J]. Geomatics and Information Science of Wuhan University, 2024, 49(9): 1517-1526. DOI: 10.13203/j.whugis20230030
    [2]ZHU Shaolin, YUE Dongjie, HE Lina, CHEN Jian, LIU Shengnan. BDS-2/BDS-3 Joint Triple-Frequency Precise Point Positioning Models and Bias Characteristic Analysis[J]. Geomatics and Information Science of Wuhan University, 2023, 48(12): 2049-2059. DOI: 10.13203/j.whugis20210273
    [3]ZHAO Qile, TAO Jun, GUO Jing, CHEN Guo, XU Xiaolong, ZHANG Qiang, ZHANG Gaojian, XU Shengyi, LI Junqiang. Wide-Area Instantaneous cm-Level Precise Point Positioning: Method and Service System[J]. Geomatics and Information Science of Wuhan University, 2023, 48(7): 1058-1069. DOI: 10.13203/j.whugis20230202
    [4]YAN Zhongbao, ZHANG Xiaohong. Partial Ambiguity Resolution Method and Results Analysis for GNSS Uncombined PPP[J]. Geomatics and Information Science of Wuhan University, 2022, 47(6): 979-989. DOI: 10.13203/j.whugis20220025
    [5]ZHANG Hui, HAO Jinming, LIU Weiping, ZHOU Rui, TIAN Yingguo. GPS/BDS Precise Point Positioning Model with Receiver DCB Parameters for Raw Observations[J]. Geomatics and Information Science of Wuhan University, 2019, 44(4): 495-500, 592. DOI: 10.13203/j.whugis20170119
    [6]ZHANG Xiaohong, LIU Gen, GUO Fei, LI Xin. Model Comparison and Performance Analysis of Triple-frequency BDS Precise Point Positioning[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12): 2124-2130. DOI: 10.13203/j.whugis20180078
    [7]ZHANG Xiaohong, CAI Shixiang, LI Xingxing, GUO Fei. Accuracy Analysis of Time and Frequency Transfer Based on Precise Point Positioning[J]. Geomatics and Information Science of Wuhan University, 2010, 35(3): 274-278.
    [8]ZHANG Xiaohong, GUO Fei, LI Xingxing, LIN Xiaojing. Study on Precise Point Positioning Based on Combined GPS and GLONASS[J]. Geomatics and Information Science of Wuhan University, 2010, 35(1): 9-12.
    [9]FU Jianhong, YUAN Xiuxiao. Influence of GPS Base Station on Accuracy of Positioning by Airborne Position and Orientation System[J]. Geomatics and Information Science of Wuhan University, 2007, 32(5): 398-401.
    [10]Huang Shengxiang, Zhang Yan. Estimation of Accuracy Indicators for GPS Relative Positioning[J]. Geomatics and Information Science of Wuhan University, 1997, 22(1): 47-50.
  • Cited by

    Periodical cited type(22)

    1. 肖斌宸,叶飞,叶险峰,曾翔强. 电离层和地形复杂区域北斗/GNSS实时PPP性能及大气分析. 数据与计算发展前沿(中英文). 2025(01): 108-118 .
    2. 侯诚,史俊波,苟劲松,郭际明,邹进贵. 多路径误差对BDS-3变形监测精度的影响. 大地测量与地球动力学. 2024(02): 128-133 .
    3. 邓陈喜,姜维,王剑,蔡伯根. 基于北斗3号PPP-B2b信号的实时精密单点定位方法研究. 铁道学报. 2024(02): 63-73 .
    4. 于合理,孙晓东,贾赞杰,武智佳,代桃高. 限制环境下的GNSS精密授时方法研究综述. 海洋测绘. 2024(02): 46-50 .
    5. 许扬胤,任夏,明锋. 北斗三号PPP-B2b信号精密单点定位服务可用性分析. 全球定位系统. 2024(03): 10-19 .
    6. 肖恭伟,卞逸驰,何在民,广伟,尹翔飞,张润芝. 北斗三号PPP-B2b差分码偏差对UPPP解算的影响. 西安邮电大学学报. 2024(02): 1-10 .
    7. 宋伟伟,宋啟晟,何倩倩,龚晓鹏,辜声峰. 高精度电离层产品增强PPP-B2b定位性能分析. 武汉大学学报(信息科学版). 2024(09): 1517-1526 .
    8. 索世恒,韩昆,张永峰. 伽利略高精度服务产品与其全球定位性能评估. 地理空间信息. 2024(11): 100-104+121 .
    9. 孙爽,王敏,刘长建,孟欣,季锐. PPP-B2b服务钟差常数偏差特性及对定位的影响分析. 测绘科学. 2023(01): 8-15 .
    10. 郭文飞,朱萌萌,辜声峰,左鸿铭,陈金鑫. GNSS精密时频接收机时钟调控模型与参数设计方法. 武汉大学学报(信息科学版). 2023(07): 1126-1133 .
    11. 唐守普,吴文坛,夏振营,史进志,赵婉清,莫雁寒. 北斗三号PPP-B2b独立定位分析与应用. 河北省科学院学报. 2023(03): 61-69 .
    12. 赵淑洁,赵当丽,黄媛媛,纪元法. 基于PPP-B2b改正产品的北斗实时精密星历精度分析. 时间频率学报. 2023(02): 141-149 .
    13. 张润芝,何在民,马红皎,武建锋,广伟,肖恭伟. 北斗三号PPP-B2b信号跟踪环路的极点分布法设计. 时间频率学报. 2023(02): 161-169 .
    14. 姚夏,李志敏,吴如楠,毛飞宇,龚晓鹏. 北斗三号PPP-B2b信号时间同步性能分析. 导航定位学报. 2023(04): 84-89 .
    15. 史俊波,董新莹,欧阳晨皓,彭文杰,姚宜斌. 基于北斗三号PPP服务的快速静态和低动态定位性能分析. 大地测量与地球动力学. 2023(10): 997-1002 .
    16. 韩晓红,孙保琪,张喆,周红源,杨海彦,赵当丽,杨旭海. 基于北斗三号PPP-B2b轨道的实时精密共视时间传递. 导航定位与授时. 2023(04): 103-111 .
    17. 肖鹏,孙付平,张伦东,肖凯,商向永. 北斗三号PPP-B2b服务实时动态定位性能分析. 导航定位学报. 2023(05): 21-28 .
    18. 刘杨,曾安敏,郑翠娥,江鹏,刘焱雄. 广播式远程精密水下导航定位技术. 哈尔滨工程大学学报. 2023(11): 1987-1995 .
    19. 王林伟,周长江,余海锋,岳彩亚. 全球精密单点定位性能评估. 导航定位与授时. 2023(06): 86-92 .
    20. 赵泉涌,潘树国,缪巍巍,沈超,高旺,赵庆. PPP-B2b常数偏差实时改正后的多频单历元定位. 测绘科学. 2023(11): 61-68 .
    21. 彭松,刘建坤,张云龙,常丹,孙兆辉. 基于北斗三号远程监测系统的公路岩质边坡开挖变形分析. 科学技术与工程. 2022(33): 14898-14906 .
    22. 余德荧,金际航,刘一,边少锋. 基于北斗三号PPP-B2b信号的海上精密定位试验分析. 海洋测绘. 2022(06): 51-55+64 .

    Other cited types(9)

Catalog

    Article views (2250) PDF downloads (453) Cited by(31)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return