HU Si-qi, OUYANG Yong-zhong, LIU Hui-jie, ZHU Ye, ZHAO Ling-feng, DONG Chao. Adaptive Matched Filtering Algorithm for High-Precision Laser Bathymetry[J]. Geomatics and Information Science of Wuhan University, 2021, 46(9): 1395-1403. DOI: 10.13203/j.whugis20200402
Citation: HU Si-qi, OUYANG Yong-zhong, LIU Hui-jie, ZHU Ye, ZHAO Ling-feng, DONG Chao. Adaptive Matched Filtering Algorithm for High-Precision Laser Bathymetry[J]. Geomatics and Information Science of Wuhan University, 2021, 46(9): 1395-1403. DOI: 10.13203/j.whugis20200402

Adaptive Matched Filtering Algorithm for High-Precision Laser Bathymetry

Funds: 

The National Natural Science Foundation of China 41774021

the Strategic Priority Research Program of the Chinese Academy of Sciences XDA15020400

Shanghai Municipal Science and Technology Major Project 2019SHZDZX01

More Information
  • Author Bio:

    HU Si-qi: HU Siqi, PhD, assistant researcher, specializes in free space laser communication. E-mail: siqi.hu@outlook.com

  • Received Date: December 23, 2020
  • Published Date: September 17, 2021
  •   Objectives  The airborne laser bathymetry system transmitted laser pulse through the complex channel which consisted of atmosphere, air-sea interface and water channel. The signal power decreased exponential with the increment of the water depth, and the pulse waveform was stretched and distorted at the same time. These two types of transmission characteristics would limit the maximum detection depth and the measurement accuracy of depth, respectively.
      Methods  The purpose of the proposed algorithm is to improve the measurement accuracy of laser bathymetry system on the premise of ensuring the maximum detection depth performance. First, the water quality and Monte Carlo simulation method are used to study the different depth of echo signal characteristics. It reveals the propagation properties of laser signal and establishes a new parameter design method for laser bathymetry system, which can meet the requirment of international airborne laser depth bathymetry system. Then, the waveform distortion of echo signals at different depths are simulated under the specific system parameters. The adaptive matching filter algorithm is designed to improve the measurement precision.
      Results  The simulation results revealed that the designed system parameters and the adaptive matched filtering algorithm can achieve the performance with the maximum detection depth of 50 m with measurement accuracy of 166 mm in the daytime and with the maximum detection depth of 70 m with measurement accuracy of 172 mm at night for laser bathymetry system.
      Conclusions  The results show that the adaptive matched filtering algorithm can improve the measurement accuracy and serve the marine surveying and mapping of China.
  • [1]
    程鹏飞, 文汉江, 刘焕玲, 等. 卫星大地测量学的研究现状及发展趋势[J]. 武汉大学学报·信息科学版, 2019, 44 (1): 48-54 doi: 10.13203/j.whugis20180356

    Cheng Pengfei, Wen Hanjiang, Liu Huanling, et al. Research Situation and Future Development of Satellite Geodesy[J]. Geomatics and Information Science of Wuhan University, 2019, 44(1): 48-54 doi: 10.13203/j.whugis20180356
    [2]
    赵建虎, 吴敬文, 赵兴磊, 等. 一种改进的机载激光测深深度偏差模型[J]. 武汉大学学报· 信息科学版, 2019, 44 (3): 328-333 https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201903002.htm

    Zhao Jianhu, Wu Jingwen, Zhao Xinglei, et al. A Correction Model for Depth Bias in Airborne LiDAR Bathymetry Systems[J]. Geomatics and Information Science of Wuhan University, 2019, 44(3): 328-333 https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201903002.htm
    [3]
    陈烽. 近海机载激光海洋测深技术[J]. 应用光学, 1999, 20 (2): 18-23 https://www.cnki.com.cn/Article/CJFDTOTAL-YYGX902.004.htm

    Chen Feng. Airborne Laser Hydrography for Costal Water[J]. Journal of Applied Optics, 1999, 20 (2): 18-23 https://www.cnki.com.cn/Article/CJFDTOTAL-YYGX902.004.htm
    [4]
    王越. 机载激光浅海测深技术的现状和发展[J]测绘地理信息, 2014, 39 (3): 38-42 https://www.cnki.com.cn/Article/CJFDTOTAL-CHXG201403012.htm

    Wang Yue. Current Status and Development of Airborne Laser Bathymetry Technology[J]. Journal of Geomatics, 2014, 39(3): 38-42 https://www.cnki.com.cn/Article/CJFDTOTAL-CHXG201403012.htm
    [5]
    翟国君. 卫星测高在海洋测绘中的应用[J]. 海洋测绘, 2002, 22(4): 58-62 doi: 10.3969/j.issn.1671-3044.2002.04.017

    Zhai Guojun. Application of Satellite Altimetry in Ocean Mapping[J]. Hydrographic Surveying and Charting, 2002, 22(4): 58-62 doi: 10.3969/j.issn.1671-3044.2002.04.017
    [6]
    欧阳永忠, 黄谟涛, 翟国君, 等. 机载激光测深中的深度归算技术[J]. 海洋测绘, 2003, 23 (1): 1-5 doi: 10.3969/j.issn.1671-3044.2003.01.001

    Ouyang Yongzhong, Huang Motao, Zhai Guojun, et al. On the Depth Reduction in Airborne Laser Hydrography[J]. Hydrographic Surveying and Charting, 2003, 23(1): 1-5 doi: 10.3969/j.issn.1671-3044.2003.01.001
    [7]
    Irish J L, White T E. Coastal Engineering Applications of High-Resolution LiDAR Bathymetry[J]. Coastal Engineering, 1998, 35 (1/2): 47-71 http://www.sciencedirect.com/science/article/pii/S0378383998000222
    [8]
    胡善江, 贺岩, 臧华国, 等. 新型机载激光测深系统及其飞行实验结果[J]. 中国激光, 2006, 33 (9): 1 163-1 167 doi: 10.3321/j.issn:0258-7025.2006.09.003

    Hu Shanjiang, He Yan, Zang Huaguo, et al. A New Airborne Laser Bathymetry System and Survey Result[J]. Chinese Journal of Lasers, 2006, 33 (9): 1 163-1 167 doi: 10.3321/j.issn:0258-7025.2006.09.003
    [9]
    Tuell G, Barbor K, Wozencraft J. Overview of the Coastal Zone Mapping and Imaging LiDAR (CZMIL): A New Multisensor Airborne Mapping System for the US Army Corps of Engineers[C]//Proceedings of SPIE, Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XVI, Orlando, Florida, USA, 2010
    [10]
    Steinvall O K, Koppari K R, Karlsson U C M. Airborne Laser Depth Sounding: System Aspects and Performance[C]//Proceedings of SPIE, Ocean Optics XⅡ, Bergen, Norway, 1994
    [11]
    Parker H, Sinclair M. The Successful Application of Airborne LiDAR Bathymetry Surveys Using Latest Technology[C]//Proceedings of Oceans, Yeosu, Korea(South), 2012
    [12]
    朱晓, 杨克成, 李再光. 机载激光测深试验[J]. 中国激光, 1998, 25 (5): 470-472 doi: 10.3321/j.issn:0258-7025.1998.05.018

    Zhu Xiao, Yang Kecheng, Li Zaiguang. The Experiment of Airborne Laser Bathymeter[J]. Chinese Journal of Lasers, 1998, 25(5): 470-472 doi: 10.3321/j.issn:0258-7025.1998.05.018
    [13]
    姚春华, 陈卫标, 臧华国, 等. 机载激光测深系统中的精确海表测量[J]. 红外与激光工程, 2003, 32 (4): 351-355 doi: 10.3969/j.issn.1007-2276.2003.04.006

    Yao Chunhua, Chen Weibiao, Zang Huaguo, et al. Accurate Measurement of Sea Surface in an Airborne Laser Bathymetry[J]. Infrared and Laser Engineering, 2003, 32(4): 351-355 doi: 10.3969/j.issn.1007-2276.2003.04.006
    [14]
    张凯临. 机载海洋激光荧光雷达软硬件设计与飞行实验[D]. 青岛: 中国海洋大学, 2005

    Zhang Kailin. The System Design and Experiments of the Airborne Fluorescence Ocean LiDAR[D]. Qingdao: Ocean University of China, 2005
    [15]
    翟国君, 黄谟涛, 欧阳永忠, 等. 机载激光测深系统研制中的关键技术[J]. 海洋测绘, 2014, 34 (3): 73-76 doi: 10.3969/j.issn.1671-3044.2014.03.019

    Zhai Guojun, Huang Motao, Ouyang Yongzhong, et al. Key Technologies Related to the Development of Airborne Laser Bathymetry System[J]. Hydrographic Surveying and Charting, 2014, 34(3): 73- 76 doi: 10.3969/j.issn.1671-3044.2014.03.019
    [16]
    李晓龙, 陈永华, 于非, 等. 海洋激光雷达水体光学特性参数反演模型对比及分析[J]. 光学学报, 2017, 37 (10): 1001005 https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201710005.htm

    Li Xiaolong, Chen Yonghua, Yu Fei, et al. Comparison and Analysis of Inversion Models for Water Optical Property Parameters by Ocean LiDAR[J]. Acta Optica Sinica, 2017, 37(10): 1001005 https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201710005.htm
    [17]
    贺岩, 胡善江, 陈卫标, 等. 国产机载双频激光雷达探测技术研究进展[J]. 激光与光电子学进展, 2018, 55(8): 82801 https://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ201808001.htm

    He Yan, Hu Shanjiang, Chen Weibiao, et al. Research Progress of Domestic Airborne Dual-Frequency LiDAR Detection Technology[J]. Laser & Optoelectronics Progress, 2018, 55(8): 82801 https://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ201808001.htm
    [18]
    汪权东, 陈卫标, 陆雨田, 等. 机载海洋激光测深系统参量设计与最大探测深度能力分析[J]. 光学学报, 2003, 23 (10): 1 255-1 260 doi: 10.3321/j.issn:0253-2239.2003.10.022

    Wang Quandong, Chen Weibiao, Lu Yutian, et al. Analysis of Relationship Between Parameter Choice of Airborne Laser Bathymetry and Maximum Penetrability[J]. Acta Optica Sinica, 2003, 23 (10): 1 255- 1 260 doi: 10.3321/j.issn:0253-2239.2003.10.022
    [19]
    黄田程, 陶邦一, 毛志华, 等. 基于多通道海洋激光雷达的海陆波形分类[J]. 中国激光, 2017, 44 (6): 0610002 https://www.cnki.com.cn/Article/CJFDTOTAL-JJZZ201706038.htm

    Huang Tiancheng, Tao Bangyi, Mao Zhihua, et al. Classification of Sea and Land Waveform Based on Multi-Channel Ocean LiDAR[J]. Chinese Journal of Lasers, 2017, 44(6): 0610002 https://www.cnki.com.cn/Article/CJFDTOTAL-JJZZ201706038.htm
    [20]
    Hu S Q, Mi L, Zhou T H, et al. The Down-Link Propagation Modeling for Underwater Laser Com munication[C]//Asia Communications and Photonics Conference, Guangzhou, China, 2017
    [21]
    阎旭光. 基于蒙特卡罗模拟的海水光信道特性研究[D]. 武汉: 华中科技大学, 2004

    Yan Xuguang. Study on Characters of the Seawater Optical Channel Basing on Monte Carlo Simulation [D]. Wuhan: Huazhong University of Science and Technology, 2004
    [22]
    吴方平, 章曦, 李配军, 等. 海洋激光雷达水下目标探测的蒙特卡罗仿真分析[J]. 激光与光电子学进展, 2012, 49 (12): 121401

    Wu Fangping, Zhang Xi, Li Peijun, et al. Monte Carlo Simulation Analysis of Underwater Target Detection by Oceanic LiDAR[J]. Laser & Optoelectronics Progress, 2012, 49(12): 121401
    [23]
    李仅伟, 毕卫红, 任炎辉. 水下激光通信中脉冲时域展宽的模拟计算方法[J]. 光学技术, 2012, 38 (5): 569-572 https://www.cnki.com.cn/Article/CJFDTOTAL-GXJS201205012.htm

    Li Jinwei, Bi Weihong, Ren Yanhui. A Method for Simulating Time-Domain Broadening of Laser Pulse in the Underwater Laser Communication[J]. Optical Technique, 2012, 38(5): 569-572 https://www.cnki.com.cn/Article/CJFDTOTAL-GXJS201205012.htm
    [24]
    Jasman F, Green R J. Monte Carlo Simulation for Underwater Optical Wireless Communications[C]//2013 2nd International Workshop on Optical Wireless Communications (IWOW), Newcastle Upon Tyne, UK, 2013
    [25]
    Bogucki D J, Piskozub J, Carr M E, et al. Monte Carlo Simulation of Propagation of a Short Light Beam Through Turbulent Oceanic Flow[J]. Optics Express, 2007, 15 (21): 13 988-13 996 doi: 10.1364/OE.15.013988
    [26]
    Gjerstad K I, Stamnes J J, Hamre B, et al. Monte Carlo and Discrete-Ordinate Simulations of Irradiances in the Coupled Atmosphere-Ocean System[J]. Applied Optics, 2003, 42 (15): 2 609-2 622 doi: 10.1364/AO.42.002609
    [27]
    Lerner R M, Summers J D. Monte Carlo Description of Time- and Space-Resolved Multiple Forward Scatter in Natural Water[J]. Applied Optics, 1982, 21 (5): 861-869 doi: 10.1364/AO.21.000861
    [28]
    Hu S Q, Mi L, Zhou T H, et al. 3588 Attenuation Lengths and 332 Bits/Photon Underwater Optical Wireless Communication Based on Photon-Counting Receiver with 256-PPM[J]. Optics Express, 2018, 26 (17): 21685 doi: 10.1364/OE.26.021685
    [29]
    李源慧. 激光水下目标探测的Monte Carlo模拟[D]. 成都: 西南交通大学, 2009

    Li Yuanhui. The Monte Carlo Simulation of Laser Underwater Target Detection[D]. Chengdu: Southwest Jiaotong University, 2009
    [30]
    Hu S Q, Mi L, Zhou T H, et al. Viterbi Equalization for Long-Distance, High-Speed Underwater Laser Communication[J]. Optical Engineering, 2017, 56 (7): 076101 doi: 10.1117/1.OE.56.7.076101
    [31]
    刘梦庚, 贺岩, 陈卫标, 等. 海洋激光雷达的自适应深度提取算法[J]. 中国激光, 2018, 45 (10): 1010001 https://www.cnki.com.cn/Article/CJFDTOTAL-JJZZ201810039.htm

    Liu Menggeng, He Yan, Chen Weibiao, et al. Adaptive Depth Extraction Algorithm for Ocean LiDAR[J]. Chinese Journal of Lasers, 2018, 45 (10): 1010001 https://www.cnki.com.cn/Article/CJFDTOTAL-JJZZ201810039.htm
    [32]
    Gabriel C, Khalighi M A, Bourennane S, et al. Monte-Carlo-Based Channel Characterization for Underwater Optical Communication Systems[J]. Journal of Optical Communications and Networking, 2013, 5 (1): 1-12 doi: 10.1364/JOCN.5.000001
    [33]
    胡思奇, 周田华, 陈卫标. 水下激光通信最大比合并分集接收性能分析及仿真[J]. 中国激光, 2016, 43 (12): 1206003 https://www.cnki.com.cn/Article/CJFDTOTAL-JJZZ201612027.htm

    Hu Siqi, Zhou Tianhua, Chen Weibiao. Performance Analysis and Simulation of Maximum Ratio Combining in Underwater Laser Communication [J]. Chinese Journal of Lasers, 2016, 43(12): 1206003 https://www.cnki.com.cn/Article/CJFDTOTAL-JJZZ201612027.htm
    [34]
    Solonenko M G, Mobley C D. Inherent Optical Properties of Jerlov Water Types[J]. Applied Optics, 2015, 54 (17): 5392 doi: 10.1364/AO.54.005392
    [35]
    Jacovitti G, Scarano G. Discrete Time Techniques for Time Delay Estimation[J]. IEEE Transactions on Signal Processing, 1993, 41 (2): 525-533 doi: 10.1109/78.193195
    [36]
    罗远, 贺岩, 胡善江, 等. 基于声光扫描的三维视频激光雷达技术[J]. 中国激光, 2014, 41 (8): 0802005 https://www.cnki.com.cn/Article/CJFDTOTAL-JJZZ201408005.htm

    Luo Yuan, He Yan, Hu Shanjiang, et al. Three-Dimensional Video Imaging LiDAR System Based on Acousto-Optic Laser Scanning[J]. Chinese Journal of Lasers, 2014, 41(8): 0802005 https://www.cnki.com.cn/Article/CJFDTOTAL-JJZZ201408005.htm
    [37]
    杨馥, 贺岩, 周田华, 等. 基于伪随机码调制和单光子计数的星载测高计仿真[J]. 光学学报, 2009, 29 (1): 21-26 https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB200901006.htm

    Yang Fu, He Yan, Zhou Tianhua, et al. Simulation of Space-Borne Altimeter Based on Pseudorandom Modulation and Single-Photon Counting[J]. Acta Optica Sinica, 2009, 29(1): 21-26 https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB200901006.htm
  • Related Articles

    [1]ZHAO Binbin, XIE Jianxiang, ZHANG Hongkui, WANG Liwei, WANG Qian. Geographic Line Extraction Algorithm Based on Morphing Transformation Techniques[J]. Geomatics and Information Science of Wuhan University, 2025, 50(1): 174-183. DOI: 10.13203/j.whugis20220493
    [2]WANG Pengxin, CHEN Chi, ZHANG Yue, ZHANG Shuyu, LIU Junming. Estimation of Winter Wheat Yield Using Assimilated Bi-variables and PCA-Copula Method[J]. Geomatics and Information Science of Wuhan University, 2022, 47(8): 1201-1212. DOI: 10.13203/j.whugis20220038
    [3]XIE Yanxin, WU Xiaocheng, HU Xiong. Using One-Dimensional Variational Assimilation Algorithm to Obtain Atmospheric Refractive Index from Ground-Based GPS Phase Delay[J]. Geomatics and Information Science of Wuhan University, 2018, 43(7): 1042-1047. DOI: 10.13203/j.whugis20160238
    [4]LI Jingzhong, ZHANG Jinming. A Morphing Method for Smooth Area Features Based on Fourier Transform[J]. Geomatics and Information Science of Wuhan University, 2017, 42(8): 1104-1109. DOI: 10.13203/j.whugis20150157
    [5]OU Ming, ZHEN Weimin, XU Jisheng, YU Xiao, LIU Yiwen, LIU Dun. Regional Ionospheric TEC Reconstruction by Data Assimilation Technique[J]. Geomatics and Information Science of Wuhan University, 2017, 42(8): 1075-1081. DOI: 10.13203/j.whugis20150297
    [6]WANG Hongwei, HUANG Chunlin, HOU Jinliang, LI Xiaoying. Estimation of Snow Depth from Multi-source Data Fusion Based on Data Assimilation Algorithm[J]. Geomatics and Information Science of Wuhan University, 2016, 41(6): 848-852. DOI: 10.13203/j.whugis20140568
    [7]SONG Fucheng, SHI Shuangshuang, FENG Jiandi. Construction of Ionospheric TEC Assimilation Model Based on Chapman Function[J]. Geomatics and Information Science of Wuhan University, 2016, 41(6): 784-790. DOI: 10.13203/j.whugis20150101
    [8]ZHANG Xianfeng, ZHAO Jiepeng. System for Soil Moisture Retrieval and Data Assimilation from Remotely Sensed Data in Arid Regions[J]. Geomatics and Information Science of Wuhan University, 2012, 37(7): 794-799.
    [9]WU Mingguang, LUE Guonian, CHEN Taisheng. Data Structure Assimilation of Marker Symbol[J]. Geomatics and Information Science of Wuhan University, 2011, 36(2): 239-243.
    [10]CHEN Rongyuan, LIU Guoying, WANG Leiguang, QIN Qianqing. Fusion Algorithm of Multispectral and Panchromatic Images Based on the Data Assimilation[J]. Geomatics and Information Science of Wuhan University, 2009, 34(8): 919-923.
  • Cited by

    Periodical cited type(13)

    1. 杨忠荣. 低成本车载RTK高精度定位方法. 地理空间信息. 2025(03): 96-100 .
    2. 程建华,陈思成,臧楠,程思翔,赵国晶,马子凡. 附加自适应短时高程变化率约束的PPP/INS紧组合增强模型. 测绘学报. 2024(09): 1761-1776 .
    3. 王勋,崔先强,高天杭. 动力学模型自适应滤波算法研究. 武汉大学学报(信息科学版). 2023(05): 741-748 .
    4. 张一,尹潇,宋海娜. 运动方向约束的自适应SRUKF目标跟踪算法. 导航定位学报. 2023(05): 53-59 .
    5. 李清泉,吕世望,陈智鹏,殷煜,张德津. 冬奥会国家速滑馆超大地坪平整度快速测量. 武汉大学学报(信息科学版). 2022(03): 325-333 .
    6. 辜声峰,戴春齐,何成鹏,方礼喆,王梓豪. 面向城市车载导航的多系统PPP-RTK/VIO半紧组合算法性能分析. 武汉大学学报(信息科学版). 2021(12): 1852-1861 .
    7. 陶晓晓,卢小平,路泽忠,周雨石,余振宝. WiFi融合环境光定位方法研究. 测绘科学. 2020(06): 57-61+72 .
    8. 张辰东,王兆瑞. 一种长隧道内高速列车实时高精度定位方法. 计算机仿真. 2020(09): 124-128+188 .
    9. 尹潇,柴洪洲,向民志,杜祯强. 附加运动学约束的BDS抗差UKF导航算法. 测绘学报. 2020(11): 1399-1406 .
    10. 王诒国,潘孝星. 基于马氏距离的抗差卡尔曼滤波算法在组合导航中的应用. 北京测绘. 2020(12): 1810-1814 .
    11. 吕大千,曾芳玲,欧阳晓凤,于合理. 时频传递的改进整数相位钟方法. 测绘学报. 2019(07): 889-897 .
    12. 邓中亮,尹露,唐诗浩,刘延旭,宋汶轩. 室内定位关键技术综述. 导航定位与授时. 2018(03): 14-23 .
    13. 张迪,施昆,李照永. 移动测量系统的GNSS/INS组合定位方法的对比研究. 软件. 2018(08): 110-116 .

    Other cited types(18)

Catalog

    Article views (1997) PDF downloads (76) Cited by(31)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return