Citation: | HU Si-qi, OUYANG Yong-zhong, LIU Hui-jie, ZHU Ye, ZHAO Ling-feng, DONG Chao. Adaptive Matched Filtering Algorithm for High-Precision Laser Bathymetry[J]. Geomatics and Information Science of Wuhan University, 2021, 46(9): 1395-1403. DOI: 10.13203/j.whugis20200402 |
[1] |
程鹏飞, 文汉江, 刘焕玲, 等. 卫星大地测量学的研究现状及发展趋势[J]. 武汉大学学报·信息科学版, 2019, 44 (1): 48-54 doi: 10.13203/j.whugis20180356
Cheng Pengfei, Wen Hanjiang, Liu Huanling, et al. Research Situation and Future Development of Satellite Geodesy[J]. Geomatics and Information Science of Wuhan University, 2019, 44(1): 48-54 doi: 10.13203/j.whugis20180356
|
[2] |
赵建虎, 吴敬文, 赵兴磊, 等. 一种改进的机载激光测深深度偏差模型[J]. 武汉大学学报· 信息科学版, 2019, 44 (3): 328-333 https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201903002.htm
Zhao Jianhu, Wu Jingwen, Zhao Xinglei, et al. A Correction Model for Depth Bias in Airborne LiDAR Bathymetry Systems[J]. Geomatics and Information Science of Wuhan University, 2019, 44(3): 328-333 https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201903002.htm
|
[3] |
陈烽. 近海机载激光海洋测深技术[J]. 应用光学, 1999, 20 (2): 18-23 https://www.cnki.com.cn/Article/CJFDTOTAL-YYGX902.004.htm
Chen Feng. Airborne Laser Hydrography for Costal Water[J]. Journal of Applied Optics, 1999, 20 (2): 18-23 https://www.cnki.com.cn/Article/CJFDTOTAL-YYGX902.004.htm
|
[4] |
王越. 机载激光浅海测深技术的现状和发展[J]测绘地理信息, 2014, 39 (3): 38-42 https://www.cnki.com.cn/Article/CJFDTOTAL-CHXG201403012.htm
Wang Yue. Current Status and Development of Airborne Laser Bathymetry Technology[J]. Journal of Geomatics, 2014, 39(3): 38-42 https://www.cnki.com.cn/Article/CJFDTOTAL-CHXG201403012.htm
|
[5] |
翟国君. 卫星测高在海洋测绘中的应用[J]. 海洋测绘, 2002, 22(4): 58-62 doi: 10.3969/j.issn.1671-3044.2002.04.017
Zhai Guojun. Application of Satellite Altimetry in Ocean Mapping[J]. Hydrographic Surveying and Charting, 2002, 22(4): 58-62 doi: 10.3969/j.issn.1671-3044.2002.04.017
|
[6] |
欧阳永忠, 黄谟涛, 翟国君, 等. 机载激光测深中的深度归算技术[J]. 海洋测绘, 2003, 23 (1): 1-5 doi: 10.3969/j.issn.1671-3044.2003.01.001
Ouyang Yongzhong, Huang Motao, Zhai Guojun, et al. On the Depth Reduction in Airborne Laser Hydrography[J]. Hydrographic Surveying and Charting, 2003, 23(1): 1-5 doi: 10.3969/j.issn.1671-3044.2003.01.001
|
[7] |
Irish J L, White T E. Coastal Engineering Applications of High-Resolution LiDAR Bathymetry[J]. Coastal Engineering, 1998, 35 (1/2): 47-71 http://www.sciencedirect.com/science/article/pii/S0378383998000222
|
[8] |
胡善江, 贺岩, 臧华国, 等. 新型机载激光测深系统及其飞行实验结果[J]. 中国激光, 2006, 33 (9): 1 163-1 167 doi: 10.3321/j.issn:0258-7025.2006.09.003
Hu Shanjiang, He Yan, Zang Huaguo, et al. A New Airborne Laser Bathymetry System and Survey Result[J]. Chinese Journal of Lasers, 2006, 33 (9): 1 163-1 167 doi: 10.3321/j.issn:0258-7025.2006.09.003
|
[9] |
Tuell G, Barbor K, Wozencraft J. Overview of the Coastal Zone Mapping and Imaging LiDAR (CZMIL): A New Multisensor Airborne Mapping System for the US Army Corps of Engineers[C]//Proceedings of SPIE, Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XVI, Orlando, Florida, USA, 2010
|
[10] |
Steinvall O K, Koppari K R, Karlsson U C M. Airborne Laser Depth Sounding: System Aspects and Performance[C]//Proceedings of SPIE, Ocean Optics XⅡ, Bergen, Norway, 1994
|
[11] |
Parker H, Sinclair M. The Successful Application of Airborne LiDAR Bathymetry Surveys Using Latest Technology[C]//Proceedings of Oceans, Yeosu, Korea(South), 2012
|
[12] |
朱晓, 杨克成, 李再光. 机载激光测深试验[J]. 中国激光, 1998, 25 (5): 470-472 doi: 10.3321/j.issn:0258-7025.1998.05.018
Zhu Xiao, Yang Kecheng, Li Zaiguang. The Experiment of Airborne Laser Bathymeter[J]. Chinese Journal of Lasers, 1998, 25(5): 470-472 doi: 10.3321/j.issn:0258-7025.1998.05.018
|
[13] |
姚春华, 陈卫标, 臧华国, 等. 机载激光测深系统中的精确海表测量[J]. 红外与激光工程, 2003, 32 (4): 351-355 doi: 10.3969/j.issn.1007-2276.2003.04.006
Yao Chunhua, Chen Weibiao, Zang Huaguo, et al. Accurate Measurement of Sea Surface in an Airborne Laser Bathymetry[J]. Infrared and Laser Engineering, 2003, 32(4): 351-355 doi: 10.3969/j.issn.1007-2276.2003.04.006
|
[14] |
张凯临. 机载海洋激光荧光雷达软硬件设计与飞行实验[D]. 青岛: 中国海洋大学, 2005
Zhang Kailin. The System Design and Experiments of the Airborne Fluorescence Ocean LiDAR[D]. Qingdao: Ocean University of China, 2005
|
[15] |
翟国君, 黄谟涛, 欧阳永忠, 等. 机载激光测深系统研制中的关键技术[J]. 海洋测绘, 2014, 34 (3): 73-76 doi: 10.3969/j.issn.1671-3044.2014.03.019
Zhai Guojun, Huang Motao, Ouyang Yongzhong, et al. Key Technologies Related to the Development of Airborne Laser Bathymetry System[J]. Hydrographic Surveying and Charting, 2014, 34(3): 73- 76 doi: 10.3969/j.issn.1671-3044.2014.03.019
|
[16] |
李晓龙, 陈永华, 于非, 等. 海洋激光雷达水体光学特性参数反演模型对比及分析[J]. 光学学报, 2017, 37 (10): 1001005 https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201710005.htm
Li Xiaolong, Chen Yonghua, Yu Fei, et al. Comparison and Analysis of Inversion Models for Water Optical Property Parameters by Ocean LiDAR[J]. Acta Optica Sinica, 2017, 37(10): 1001005 https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201710005.htm
|
[17] |
贺岩, 胡善江, 陈卫标, 等. 国产机载双频激光雷达探测技术研究进展[J]. 激光与光电子学进展, 2018, 55(8): 82801 https://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ201808001.htm
He Yan, Hu Shanjiang, Chen Weibiao, et al. Research Progress of Domestic Airborne Dual-Frequency LiDAR Detection Technology[J]. Laser & Optoelectronics Progress, 2018, 55(8): 82801 https://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ201808001.htm
|
[18] |
汪权东, 陈卫标, 陆雨田, 等. 机载海洋激光测深系统参量设计与最大探测深度能力分析[J]. 光学学报, 2003, 23 (10): 1 255-1 260 doi: 10.3321/j.issn:0253-2239.2003.10.022
Wang Quandong, Chen Weibiao, Lu Yutian, et al. Analysis of Relationship Between Parameter Choice of Airborne Laser Bathymetry and Maximum Penetrability[J]. Acta Optica Sinica, 2003, 23 (10): 1 255- 1 260 doi: 10.3321/j.issn:0253-2239.2003.10.022
|
[19] |
黄田程, 陶邦一, 毛志华, 等. 基于多通道海洋激光雷达的海陆波形分类[J]. 中国激光, 2017, 44 (6): 0610002 https://www.cnki.com.cn/Article/CJFDTOTAL-JJZZ201706038.htm
Huang Tiancheng, Tao Bangyi, Mao Zhihua, et al. Classification of Sea and Land Waveform Based on Multi-Channel Ocean LiDAR[J]. Chinese Journal of Lasers, 2017, 44(6): 0610002 https://www.cnki.com.cn/Article/CJFDTOTAL-JJZZ201706038.htm
|
[20] |
Hu S Q, Mi L, Zhou T H, et al. The Down-Link Propagation Modeling for Underwater Laser Com munication[C]//Asia Communications and Photonics Conference, Guangzhou, China, 2017
|
[21] |
阎旭光. 基于蒙特卡罗模拟的海水光信道特性研究[D]. 武汉: 华中科技大学, 2004
Yan Xuguang. Study on Characters of the Seawater Optical Channel Basing on Monte Carlo Simulation [D]. Wuhan: Huazhong University of Science and Technology, 2004
|
[22] |
吴方平, 章曦, 李配军, 等. 海洋激光雷达水下目标探测的蒙特卡罗仿真分析[J]. 激光与光电子学进展, 2012, 49 (12): 121401
Wu Fangping, Zhang Xi, Li Peijun, et al. Monte Carlo Simulation Analysis of Underwater Target Detection by Oceanic LiDAR[J]. Laser & Optoelectronics Progress, 2012, 49(12): 121401
|
[23] |
李仅伟, 毕卫红, 任炎辉. 水下激光通信中脉冲时域展宽的模拟计算方法[J]. 光学技术, 2012, 38 (5): 569-572 https://www.cnki.com.cn/Article/CJFDTOTAL-GXJS201205012.htm
Li Jinwei, Bi Weihong, Ren Yanhui. A Method for Simulating Time-Domain Broadening of Laser Pulse in the Underwater Laser Communication[J]. Optical Technique, 2012, 38(5): 569-572 https://www.cnki.com.cn/Article/CJFDTOTAL-GXJS201205012.htm
|
[24] |
Jasman F, Green R J. Monte Carlo Simulation for Underwater Optical Wireless Communications[C]//2013 2nd International Workshop on Optical Wireless Communications (IWOW), Newcastle Upon Tyne, UK, 2013
|
[25] |
Bogucki D J, Piskozub J, Carr M E, et al. Monte Carlo Simulation of Propagation of a Short Light Beam Through Turbulent Oceanic Flow[J]. Optics Express, 2007, 15 (21): 13 988-13 996 doi: 10.1364/OE.15.013988
|
[26] |
Gjerstad K I, Stamnes J J, Hamre B, et al. Monte Carlo and Discrete-Ordinate Simulations of Irradiances in the Coupled Atmosphere-Ocean System[J]. Applied Optics, 2003, 42 (15): 2 609-2 622 doi: 10.1364/AO.42.002609
|
[27] |
Lerner R M, Summers J D. Monte Carlo Description of Time- and Space-Resolved Multiple Forward Scatter in Natural Water[J]. Applied Optics, 1982, 21 (5): 861-869 doi: 10.1364/AO.21.000861
|
[28] |
Hu S Q, Mi L, Zhou T H, et al. 3588 Attenuation Lengths and 332 Bits/Photon Underwater Optical Wireless Communication Based on Photon-Counting Receiver with 256-PPM[J]. Optics Express, 2018, 26 (17): 21685 doi: 10.1364/OE.26.021685
|
[29] |
李源慧. 激光水下目标探测的Monte Carlo模拟[D]. 成都: 西南交通大学, 2009
Li Yuanhui. The Monte Carlo Simulation of Laser Underwater Target Detection[D]. Chengdu: Southwest Jiaotong University, 2009
|
[30] |
Hu S Q, Mi L, Zhou T H, et al. Viterbi Equalization for Long-Distance, High-Speed Underwater Laser Communication[J]. Optical Engineering, 2017, 56 (7): 076101 doi: 10.1117/1.OE.56.7.076101
|
[31] |
刘梦庚, 贺岩, 陈卫标, 等. 海洋激光雷达的自适应深度提取算法[J]. 中国激光, 2018, 45 (10): 1010001 https://www.cnki.com.cn/Article/CJFDTOTAL-JJZZ201810039.htm
Liu Menggeng, He Yan, Chen Weibiao, et al. Adaptive Depth Extraction Algorithm for Ocean LiDAR[J]. Chinese Journal of Lasers, 2018, 45 (10): 1010001 https://www.cnki.com.cn/Article/CJFDTOTAL-JJZZ201810039.htm
|
[32] |
Gabriel C, Khalighi M A, Bourennane S, et al. Monte-Carlo-Based Channel Characterization for Underwater Optical Communication Systems[J]. Journal of Optical Communications and Networking, 2013, 5 (1): 1-12 doi: 10.1364/JOCN.5.000001
|
[33] |
胡思奇, 周田华, 陈卫标. 水下激光通信最大比合并分集接收性能分析及仿真[J]. 中国激光, 2016, 43 (12): 1206003 https://www.cnki.com.cn/Article/CJFDTOTAL-JJZZ201612027.htm
Hu Siqi, Zhou Tianhua, Chen Weibiao. Performance Analysis and Simulation of Maximum Ratio Combining in Underwater Laser Communication [J]. Chinese Journal of Lasers, 2016, 43(12): 1206003 https://www.cnki.com.cn/Article/CJFDTOTAL-JJZZ201612027.htm
|
[34] |
Solonenko M G, Mobley C D. Inherent Optical Properties of Jerlov Water Types[J]. Applied Optics, 2015, 54 (17): 5392 doi: 10.1364/AO.54.005392
|
[35] |
Jacovitti G, Scarano G. Discrete Time Techniques for Time Delay Estimation[J]. IEEE Transactions on Signal Processing, 1993, 41 (2): 525-533 doi: 10.1109/78.193195
|
[36] |
罗远, 贺岩, 胡善江, 等. 基于声光扫描的三维视频激光雷达技术[J]. 中国激光, 2014, 41 (8): 0802005 https://www.cnki.com.cn/Article/CJFDTOTAL-JJZZ201408005.htm
Luo Yuan, He Yan, Hu Shanjiang, et al. Three-Dimensional Video Imaging LiDAR System Based on Acousto-Optic Laser Scanning[J]. Chinese Journal of Lasers, 2014, 41(8): 0802005 https://www.cnki.com.cn/Article/CJFDTOTAL-JJZZ201408005.htm
|
[37] |
杨馥, 贺岩, 周田华, 等. 基于伪随机码调制和单光子计数的星载测高计仿真[J]. 光学学报, 2009, 29 (1): 21-26 https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB200901006.htm
Yang Fu, He Yan, Zhou Tianhua, et al. Simulation of Space-Borne Altimeter Based on Pseudorandom Modulation and Single-Photon Counting[J]. Acta Optica Sinica, 2009, 29(1): 21-26 https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB200901006.htm
|
[1] | ZHAO Binbin, XIE Jianxiang, ZHANG Hongkui, WANG Liwei, WANG Qian. Geographic Line Extraction Algorithm Based on Morphing Transformation Techniques[J]. Geomatics and Information Science of Wuhan University, 2025, 50(1): 174-183. DOI: 10.13203/j.whugis20220493 |
[2] | WANG Pengxin, CHEN Chi, ZHANG Yue, ZHANG Shuyu, LIU Junming. Estimation of Winter Wheat Yield Using Assimilated Bi-variables and PCA-Copula Method[J]. Geomatics and Information Science of Wuhan University, 2022, 47(8): 1201-1212. DOI: 10.13203/j.whugis20220038 |
[3] | XIE Yanxin, WU Xiaocheng, HU Xiong. Using One-Dimensional Variational Assimilation Algorithm to Obtain Atmospheric Refractive Index from Ground-Based GPS Phase Delay[J]. Geomatics and Information Science of Wuhan University, 2018, 43(7): 1042-1047. DOI: 10.13203/j.whugis20160238 |
[4] | LI Jingzhong, ZHANG Jinming. A Morphing Method for Smooth Area Features Based on Fourier Transform[J]. Geomatics and Information Science of Wuhan University, 2017, 42(8): 1104-1109. DOI: 10.13203/j.whugis20150157 |
[5] | OU Ming, ZHEN Weimin, XU Jisheng, YU Xiao, LIU Yiwen, LIU Dun. Regional Ionospheric TEC Reconstruction by Data Assimilation Technique[J]. Geomatics and Information Science of Wuhan University, 2017, 42(8): 1075-1081. DOI: 10.13203/j.whugis20150297 |
[6] | WANG Hongwei, HUANG Chunlin, HOU Jinliang, LI Xiaoying. Estimation of Snow Depth from Multi-source Data Fusion Based on Data Assimilation Algorithm[J]. Geomatics and Information Science of Wuhan University, 2016, 41(6): 848-852. DOI: 10.13203/j.whugis20140568 |
[7] | SONG Fucheng, SHI Shuangshuang, FENG Jiandi. Construction of Ionospheric TEC Assimilation Model Based on Chapman Function[J]. Geomatics and Information Science of Wuhan University, 2016, 41(6): 784-790. DOI: 10.13203/j.whugis20150101 |
[8] | ZHANG Xianfeng, ZHAO Jiepeng. System for Soil Moisture Retrieval and Data Assimilation from Remotely Sensed Data in Arid Regions[J]. Geomatics and Information Science of Wuhan University, 2012, 37(7): 794-799. |
[9] | WU Mingguang, LUE Guonian, CHEN Taisheng. Data Structure Assimilation of Marker Symbol[J]. Geomatics and Information Science of Wuhan University, 2011, 36(2): 239-243. |
[10] | CHEN Rongyuan, LIU Guoying, WANG Leiguang, QIN Qianqing. Fusion Algorithm of Multispectral and Panchromatic Images Based on the Data Assimilation[J]. Geomatics and Information Science of Wuhan University, 2009, 34(8): 919-923. |