GUO Chunxi, GUO Xinwei, NIE Jianliang, WANG Bin, LIU Xiaoyun, WANG Haitao. Establishment of Vertical Movement Model of Chinese Mainland by Fusion Result of Leveling and GNSS[J]. Geomatics and Information Science of Wuhan University, 2023, 48(4): 579-586. DOI: 10.13203/j.whugis20200167
Citation: GUO Chunxi, GUO Xinwei, NIE Jianliang, WANG Bin, LIU Xiaoyun, WANG Haitao. Establishment of Vertical Movement Model of Chinese Mainland by Fusion Result of Leveling and GNSS[J]. Geomatics and Information Science of Wuhan University, 2023, 48(4): 579-586. DOI: 10.13203/j.whugis20200167

Establishment of Vertical Movement Model of Chinese Mainland by Fusion Result of Leveling and GNSS

More Information
  • Received Date: April 16, 2021
  • Available Online: January 13, 2022
  • Published Date: April 04, 2023
  •   Objectives  The leveling and GNSS (global navigation satellite system) results are provided important data for studying the vertical movement in Chinese Mainland. Give full play to the advantages of high precision leveling points and uniform distribution of GNSS points and help improve the reliability of the vertical movement model. In the process of fusion, the lack of coincidence points between leveling and GNSS causes joint adjustment of velocity fusion to fail, a fusion method based on final model is proposed.
      Methods  First, we establish respective vertical movement model by leveling and GNSS with the method of inverse distance to a power. Second, we fuse two types of models by weighted average according to the grid point precision and nearest point principle depending on the distance between grid point and measured point. Aiming at the problem that the weight associated with the distance and the velocity precision affects the final model when inverse distance weighted is applied, a method of multiplying the weight is proposed to determine reasonable weight value for each factor.The vertical movement model of Chinese Mainland is established by using the national first order leveling result, national GNSS geodetic control network and so on. In order to measure the improvement of GNSS results on the vertical movement model, we utilize 20% of the modeling points selected from leveling and GNSS points uniformly to statistics the precision of leveling and fused vertical movement model.
      Results  The results show that the fused vertical movement model has increased by 35.3% in Qinghai Tibet region, 53.6% in other regions of Chinese Mainland and 50.8% in Chinese Mainland. The subsidence of North China Plain and Jiangsu-Shanghai areas are severe, where the velocity of individual areas is up to 100 mm/a, the North-East of China and Tibet areas show a rising trend, and the velocity exceeds 5 mm/a in local area, the vertical movement in other areas is relatively stable.
      Conclusions  Therefore, GNSS results can improve the precision and accuracy of the leveling vertical movement model, which is especially obvious inside the leveling loop. The single-source data vertical movement model is established based on the method of multiplication of two factors, and the fused vertical movement model of Chinese Mainland is established by the method of the result fusion.
  • [1]
    黄立人, 马青, 王若柏. 中国大陆部分地区的地壳垂直运动[J]. 大地测量与地球动力学, 2004, 24(4): 7-12. doi: 10.3969/j.issn.1671-5942.2004.04.002

    Huang Liren, Ma Qing, Wang Ruobai. Vertical Crustal Movement in a Part of Chinese Mainland[J]. Crustal Deformation and Earthquake, 2004, 24(4): 7-12. doi: 10.3969/j.issn.1671-5942.2004.04.002
    [2]
    Peltier A. Ground Deformation Patterns at White Island Volcano (New Zealand) Between 1967 and 2008 Deduced from Levelling Data[J]. Journal of Volcanology and Geothermal Research, 2009, 181(3): 207-218.
    [3]
    刘经南, 姚宜斌, 施闯, 等. 中国大陆现今垂直形变特征的初步探讨[J]. 大地测量与地球动力学, 2002, 22(3): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-DKXB200203000.htm

    Liu Jingnan, Yao Yibin, Shi Chuang, et al. Preliminary Research on Characteristic of Present-Day Vertical Deformation of Chinese Mainland[J]. Crustal Deformation and Earthquake, 2002, 22(3): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-DKXB200203000.htm
    [4]
    刘根友, 朱耀仲, 许厚泽, 等. GPS监测中国沿海验潮站垂直运动观测研究[J]. 武汉大学学报(信息科学版), 2005, 30(12): 1044-1047. http://ch.whu.edu.cn/article/id/2334

    Liu Genyou, Zhu Yaozhong, Xu Houze, et al. Study on Height Changes of Chinese Tide Gauges by GPS[J]. Geomatics and Information Science of Wuhan University, 2005, 30(12): 1044-1047. http://ch.whu.edu.cn/article/id/2334
    [5]
    Sato H P, Abe K, Ootaki O. GPS-Measured Land Subsidence in Ojiya City, Niigata Prefecture, Japan[J]. Engineering Geology, 2003, 67(3): 379-390.
    [6]
    Gabriele A, Bitelli M. Levelling and GPS Networks to Monitor Ground Subsidence in the Southern Po Valley[J]. Journal of Geodynamics, 2000, 30(3): 355-369. doi: 10.1016/S0264-3707(99)00071-X
    [7]
    Motagh M, Djamour Y, Walter T R, et al. Land Subsidence in Mashhad Valley, Northeast Iran: Results from InSAR, Levelling and GPS[J]. Geophysical Journal International, 2007, 168(2): 518-526. doi: 10.1111/j.1365-246X.2006.03246.x
    [8]
    杨元喜, 曾安敏. 大地测量数据融合模式及其分析[J]. 武汉大学学报(信息科学版), 2008, 33(8): 771-774. http://ch.whu.edu.cn/article/id/1674

    Yang Yuanxi, Zeng Anmin. Fusion Modes of Various Geodetic Observations and Their Analysis[J]. Geomatics and Information Science of Wuhan University, 2008, 33(8): 771-774. http://ch.whu.edu.cn/article/id/1674
    [9]
    王乐洋, 余航. 总体最小二乘联合平差[J]. 武汉大学学报(信息科学版), 2016, 41(12): 1683-1689. doi: 10.13203/j.whugis20140670

    Wang Leyang, Yu Hang. Total Least Squares Joint Adjustment[J]. Geomatics and Information Science of Wuhan University, 2016, 41(12): 1683-1689. doi: 10.13203/j.whugis20140670
    [10]
    杨元喜. 自适应动态导航定位[M]. 北京: 测绘出版社, 2006.

    Yang Yuanxi. Adaptive Navigation and Kinematic Positioning[M]. Beijing: Sino Maps Press, 2006.
    [11]
    许才军. 大地测量联合反演理论和方法研究进展[J]. 武汉大学学报(信息科学版), 2001, 26(6): 555-561. http://ch.whu.edu.cn/article/id/5232

    Xu Caijun. Progress of Joint Inversion on Geodesy and Geophysics[J]. Geomatics and Information Science of Wuhan University, 2001, 26(6): 555-561. http://ch.whu.edu.cn/article/id/5232
    [12]
    张朝玉, 许才军. 具有自适应权比的大地测量联合反演序贯算法及其应用[J]. 武汉大学学报(信息科学版), 2012, 37(10): 1140-1144. http://ch.whu.edu.cn/article/id/353

    Zhang Chaoyu, Xu Caijun. Sequential Algorithm of Geodesy Joint Inversion with Auto-match Weight Ratio and Its Application[J]. Geomatics and Information Science of Wuhan University, 2012, 37(10): 1140-1144. http://ch.whu.edu.cn/article/id/353
    [13]
    郭春喜, 聂建亮, 田婕, 等. GNSS水准高程变化自适应融合的垂直形变分析[J]. 武汉大学学报(信息科学版), 2020, 45(1): 7-12. doi: 10.13203/j.whugis20180408

    Guo Chunxi, Nie Jianliang, Tian Jie, et al. Analysis of Vertical Deformation with the Adaptive Fusion of GNSS and Leveling Elevation Variation[J]. Geomatics and Information Science of Wuhan University, 2020, 45(1): 7-12. doi: 10.13203/j.whugis20180408
    [14]
    丁阿鹿, 田婕, 聂建亮, 等. GNSS水准自适应联合平差[J]. 测绘通报, 2019(11): 126-129. https://www.cnki.com.cn/Article/CJFDTOTAL-CHTB201911025.htm

    Ding Alu, Tian Jie, Nie Jianliang, et al. The Adaptive Combination Adjustment of GNSS and Leveling Data[J]. Bulletin of Surveying and Mapping, 2019(11): 126-129. https://www.cnki.com.cn/Article/CJFDTOTAL-CHTB201911025.htm
    [15]
    曾安敏, 秦显平, 刘光明, 等. 中国大陆水平运动速度场的多面函数模型[J]. 武汉大学学报(信息科学版), 2013, 38(4): 394-398. http://ch.whu.edu.cn/article/id/756

    Zeng Anmin, Qin Xianping, Liu Guangming, et al. Hardy Multi-quadric Fitting Model of Chinese Mainland Horizontal Crustal Movement[J]. Geomatics and Information Science of Wuhan University, 2013, 38(4): 394-398. http://ch.whu.edu.cn/article/id/756
    [16]
    刘晓霞, 江在森, 武艳强. Kriging方法在GPS速度场网格化和应变率场计算中的适用性[J]. 武汉大学学报(信息科学版), 2014, 39(4): 457-461. doi: 10.13203/j.whugis20120086

    Liu Xiaoxia, Jiang Zaisen, Wu Yanqiang. The Applicability of Kriging Interpolation Method in GPS Velocity Gridding and Strain Calculating[J]. Geomatics and Information Science of Wuhan University, 2014, 39(4): 457-461. doi: 10.13203/j.whugis20120086
    [17]
    樊子德, 李佳霖, 邓敏. 顾及多因素影响的自适应反距离加权插值方法[J]. 武汉大学学报(信息科学版), 2016, 41(6): 842-847. doi: 10.13203/j.whugis20140658

    Fan Zide, Li Jialin, Deng Min. An Adaptive Inverse-Distance Weighting Spatial Interpolation Method with the Consideration of Multiple Factors[J]. Geomatics and Information Science of Wuhan University, 2016, 41(6): 842-847. doi: 10.13203/j.whugis20140658
    [18]
    董鸿闻. 中国大陆现今地壳垂直运动研究[M]. 西安: 西安地图出版社, 2002.

    Dong Hongwen. Research on Vertical Recent Crustal Movement of the Mainland of China[M]. Xi?an: Xi?an Cartographic Publishing House, 2002.
    [19]
    王文利, 郭春喜, 丁黎, 等. 全国一等水准点高程近20年变化分析[J]. 测绘学报, 2019, 48(1): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201901002.htm

    Wang Wenli, Guo Chunxi, Ding Li, et al. Elevation Change Analysis of the National First Order Leveling Points in Recent 20 Years[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(1): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201901002.htm
    [20]
    宁津生, 郭春喜, 王斌, 等. 我国陆地垂线偏差精化计算[J]. 武汉大学学报(信息科学版), 2006, 31(12): 1035-1038. http://ch.whu.edu.cn/article/id/2614

    Ning Jinsheng, Guo Chunxi, Wang Bin, et al. Refined Determination of Vertical Deflection in Chinese Mainland Area[J]. Geomatics and Information Science of Wuhan University, 2006, 31(12): 1035-1038. http://ch.whu.edu.cn/article/id/2614
    [21]
    中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 国家一、二等测量规范: GB/T 12897-2006[S]. 北京: 中国标准出版社, 2006.

    General Administration of Quality Supervision, Inspection and Quarantine of the People?s Republic of China, Standardization Administration of the People?s Republic of China. Specifications for the First and Second Order Leveling: GB/T 12897-2006[S]. Beijing: Standards Press of China, 2006.
  • Related Articles

    [1]LI Pangyin, MI Xiaoxin, DING Penghui, SUN Weichen, ZHANG Huazu, LIU Chong, DONG Zhen, YANG Bisheng. Fusion of Vehicle-Mounted Imagery and Point Cloud for Road Boundary Extraction and Vectorization[J]. Geomatics and Information Science of Wuhan University, 2024, 49(4): 631-639. DOI: 10.13203/j.whugis20230284
    [2]XING Ruixing, WU Fang, ZHANG Hao, GONG Xianyong. Dual-carriageway Road Extraction Based on Facing Project Distance[J]. Geomatics and Information Science of Wuhan University, 2018, 43(1): 152-158. DOI: 10.13203/j.whugis20150783
    [3]Liu Yuangang, Guo Qingsheng, Sun Yageng, Lin Qing, Zheng Chunyan. An Algorithm for Skeleton Extraction Between Map Objects[J]. Geomatics and Information Science of Wuhan University, 2015, 40(2): 264-268.
    [4]LUAN Xuechen, FAN Hongchao, YANG Bisheng, LI Qiuping. Arterial Roads Extraction in Urban Road NetworksBased on Shape Analysis[J]. Geomatics and Information Science of Wuhan University, 2014, 39(3): 327-331. DOI: 10.13203/j.whugis20120078
    [5]YU Jie, YU Feng, ZHANG Jing, LIU Zhenyu. High Resolution Remote Sensing Image Road Extraction Combining Region Growing and Road-unit[J]. Geomatics and Information Science of Wuhan University, 2013, 38(7): 761-764.
    [6]TIAN Jing, SONG Zihan, AI Tinghua. Grid Pattern Extraction in Road Networks with Graph[J]. Geomatics and Information Science of Wuhan University, 2012, 37(6): 724-727.
    [7]WU Xiaobo, YANG Liao, SHEN Jinxiang, WANG Jie. Road Extraction from High-resolution Remote Sensing Images with Spatial Continuity[J]. Geomatics and Information Science of Wuhan University, 2011, 36(11): 1298-1301.
    [8]LI Jiatian, LI Jia, DUAN Ping, YU Li. Perspective Projection Algorithm for Sphere Delaunay Triangulated Irregular Network[J]. Geomatics and Information Science of Wuhan University, 2011, 36(9): 1116-1119.
    [9]CHEN Tao, AI Tinghua. Automatic Extraction of Skeleton and Center of Area Feature[J]. Geomatics and Information Science of Wuhan University, 2004, 29(5): 443-446,455. DOI: 10.13203/j.whugis2004.05.015
    [10]Liu Shaochuang, Lin Zongjian. Semi automatic Road Extraction from Aerial Images[J]. Geomatics and Information Science of Wuhan University, 1996, 21(3): 258-264.
  • Cited by

    Periodical cited type(1)

    1. 陈星铨,朱俊江,朱庆龙,焦钰涵,丁小笑,刘政渊,丁咚,贾永刚,李三忠,刘永江. 南海多波束测量中水深数据异常的精细处理与成因分析. 地球科学. 2025(02): 535-550 .

    Other cited types(0)

Catalog

    Article views (965) PDF downloads (135) Cited by(1)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return