Citation: | GUO Congzhou, LI Ke, LI He, TONG Xiaochong, WANG Xiwen. Deep Convolution Neural Network Method for Remote Sensing Image Quality Level Classification[J]. Geomatics and Information Science of Wuhan University, 2022, 47(8): 1279-1286. DOI: 10.13203/j.whugis20200292 |
[1] |
闫利,胡修兵,陈长军,等. 多模态图像配准的梯度一致性算子[J]. 武汉大学学报·信息科学版, 2013, 38(8): 969-972 http://ch.whu.edu.cn/article/id/2729
Yan Li, Hu Xiubing, Chen Changjun, et al. An Operator of Gradient Consistency for Multimodal Image Registration[J]. Geomatics and Information Science of Wuhan University, 2013, 38(8): 969-972 http://ch.whu.edu.cn/article/id/2729
|
[2] |
Gao X B. Design and Implementation of Marine Automatic Target Recognition System Based on Visible Remote Sensing Images[J]. Journal of Coastal Research, 2020, 115(sp 1): 277
|
[3] |
李烨,许乾坤,李克东. 面向图像复原的残差密集生成对抗网络新方法[J]. 小型微型计算机系统, 2020, 41(4): 830-836 doi: 10.3969/j.issn.1000-1220.2020.04.028
Li Ye, Xu Qiankun, Li Kedong. New Method of Residual Dense Generative Adversarial Networks for Image Restoration[J]. Journal of Chinese Computer Systems, 2020, 41(4): 830-836 doi: 10.3969/j.issn.1000-1220.2020.04.028
|
[4] |
Ledig C, Theis L, Huszár F, et al. Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network[C]//IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 2017
|
[5] |
Dai J, Li Y, He K, et al. R-FCN: Object Detection Via Region-Based Fully Convolutional Networks[C]//Conference on Neural Information Processing Systems, Barcelona, Spain, 2016
|
[6] |
Shelhamer E, Long J, Darrell T. Fully Convolutional Networks for Semantic Segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(4): 640-651 doi: 10.1109/TPAMI.2016.2572683
|
[7] |
Pulgar F J, Rivera A J, Charte F, et al. On the Impact of Imbalanced Data in Convolutional Neural Networks Performance[M]// Cham: Springer, 2017
|
[8] |
Guo H X, Li Y J, Shang J, et al. Learning from Class-Imbalanced Data: Review of Methods and Applications[J]. Expert Systems with Applications, 2017, 73: 220-239
|
[9] |
Shermeyer J, van Etten A. The Effects of Super-Resolution on Object Detection Performance in Satellite Imagery[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Long Beach, CA, USA, 2019
|
[10] |
闫利,胡晓斌. 利用Contourlet-SSIM视觉模型的IKONOS图像质量评价研究[J]. 武汉大学学报·信息科学版, 2014, 39(1): 12-16 http://ch.whu.edu.cn/article/id/2842
Yan Li, Hu Xiaobin. Image Quality Assessment of IKONOS Images Based on Contourlet-SⅡM Model[J]. Geomatics and Information Science of Wuhan University, 2014, 39(1): 12-16 http://ch.whu.edu.cn/article/id/2842
|
[11] |
马旭东,闫利,曹纬,等. 一种新的利用梯度信息的图像质量评价模型[J]. 武汉大学学报·信息科学版, 2014, 39(12): 1412-1418 http://ch.whu.edu.cn/article/id/3133
Ma Xudong, Yan Li, Cao Wei, et al. A New Image Quality Assessment Model Based on the Gradient Information[J]. Geomatics and Information Science of Wuhan University, 2014, 39(12): 1412-1418 http://ch.whu.edu.cn/article/id/3133
|
[12] |
Redmon J, Divvala S, Girshick R, et al. You Only Look Once: Unified, Real-Time Object Detection[C]//IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 2016
|
[13] |
Redmon J, Farhadi A. Yolov3: An Incremental Improvement[J]. arXiv, 2018, DOI: 1804.02767
|
[14] |
巩丹超. 基于NⅡRS的高分辨率光学卫星影像质量评估技术[C]//第十八届十三省市光学学术会议,上海, 2010
Gong Danchao. High Resolution Optical Satellite Image Quality Assessment Technology via NⅡRS[C]//The 18th Optical Conference of 13 Provinces and Cities, Shanghai, China, 2010
|
[15] |
袁媛. 基于深度卷积神经网络的图像质量评价方法研究[D]. 武汉: 武汉大学, 2017
Yuan Yuan. Research on Image Quality Assessment Method via Deep Convolution Neural Network (D]. Wuhan: Wuhan University, 2017
|
[16] |
李真伟,崔国忠,郭从洲,等. 任意形状曲线刃边的点扩散函数估计方法[J]. 测绘学报, 2019, 48(3): 352-362 https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201903011.htm
Li Zhenwei, Cui Guozhong, Guo Congzhou, et al. An Algorithm for the Estimation of Point Spread Function Based on Curve Edge of Arbitrary Shape[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(3): 352-362 https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201903011.htm
|
[17] |
Li L, Pan J, Lai W S, et al. Learning a Discriminative Prior for Blind Image Deblurring[C]//IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 2018
|
[18] |
Goodfellow I, Bengio Y, Courville A. Deep Learning[M]. Cambridge: The MIT Press, 2016
|
[19] |
Lin M, Chen Q, Yan S. Network in Network[J]. arXiv, 2013, DOI: 1312.4400
|
[20] |
Ciberlin J, Grbic R, Teslic N, et al. Object Detectection and Object Tracking in Front of the Vehicle Using Front View Camera[C]//Zooming Innovation in Consumer Technologies Conference, Novi Sad, Serbia, 2019
|
[21] |
赵文强,孙巍. 基于S4-YOLO的海上目标检测识别方法[J]. 光学与光电技术, 2020, 18(4): 38-46 https://www.cnki.com.cn/Article/CJFDTOTAL-GXGD202004006.htm
Zhao Wenqiang, Sun Wei. Detection and Recognition Method of Marine Target Based on S4-YOLO[J]. Optics & Optoelectronic Technology, 2020, 18(4): 38-46 https://www.cnki.com.cn/Article/CJFDTOTAL-GXGD202004006.htm
|
[1] | WANG Yanli, DONG Zhipeng, WANG Mi. Ulva polifera Detection from High Resolution Remote Sensing Images Based on Dual-Path Convolutional Neural Networks[J]. Geomatics and Information Science of Wuhan University, 2024, 49(12): 2261-2270. DOI: 10.13203/j.whugis20230159 |
[2] | WANG Yan, LIU Wanjun, TAN Yali, LI Yu. Classification of Urban Functional Areas by Convolution Neural Network Recognition Combined with Sliding Window and Semantic Reasoning[J]. Geomatics and Information Science of Wuhan University, 2023, 48(6): 950-959. DOI: 10.13203/j.whugis20210377 |
[3] | TAO Liqing, HUANG Guoman, YANG Shucheng, WANG Tongtong, SHENG Huijun, FAN Haitao. A Interferogram Denoising Method Based on Convolutional Neural Network[J]. Geomatics and Information Science of Wuhan University, 2023, 48(4): 559-567. DOI: 10.13203/j.whugis20200589 |
[4] | MAO Lin, CHEN Siyu, YANG Dawei. A Guided Method for Improving the Video Human Action Classification in Convolutional Neural Networks[J]. Geomatics and Information Science of Wuhan University, 2021, 46(8): 1241-1246. DOI: 10.13203/j.whugis20190101 |
[5] | ZHOU Fangbin, ZOU Lianhua, LIU Xuejun, MENG Fanyi. Micro Landform Classification Method of Grid DEM Based on Convolutional Neural Network[J]. Geomatics and Information Science of Wuhan University, 2021, 46(8): 1186-1193. DOI: 10.13203/j.whugis20190311 |
[6] | REN Jiaxin, LIU Wanzeng, LI Zhilin, LI Ran, ZHAI Xi. Intelligent Detection of "Problematic Map" Using Convolutional Neural Network[J]. Geomatics and Information Science of Wuhan University, 2021, 46(4): 570-577. DOI: 10.13203/j.whugis20190259 |
[7] | HUANG Ruobing, JIA Yonghong. Face Swapping Using Convolutional Neural Network and Tiny Facet Primitive[J]. Geomatics and Information Science of Wuhan University, 2021, 46(3): 335-340. DOI: 10.13203/j.whugis20180500 |
[8] | LU Jian, ZHANG Xuedong, ZHANG Jianqin, GUO Xiaogang, ZHANG Yueying. Identification of Traffic Index Time Series Pattern by Using Convolution Neural Network[J]. Geomatics and Information Science of Wuhan University, 2020, 45(12): 1981-1988. DOI: 10.13203/j.whugis20200035 |
[9] | MEN Jilin, LIU Yueyan, ZHANG Bin, ZHOU Fan. Land Use Classification Based on Multi-structure Convolution Neural Network Features Cascading[J]. Geomatics and Information Science of Wuhan University, 2019, 44(12): 1841-1848. DOI: 10.13203/j.whugis20180137 |
[10] | GE Yun, JIANG Shunliang, YE Famao, XU Qingyong, TANG Yiling. Remote Sensing Image Retrieval Using Pre-trained Convolutional Neural Networks Based on ImageNet[J]. Geomatics and Information Science of Wuhan University, 2018, 43(1): 67-73. DOI: 10.13203/j.whugis20150498 |