Citation: | JU Yuanzhen, XU Qiang, JIN Shichao, LI Weile, DONG Xiujun, GUO Qinghua. Automatic Object Detection of Loess Landslide Based on Deep Learning[J]. Geomatics and Information Science of Wuhan University, 2020, 45(11): 1747-1755. DOI: 10.13203/j.whugis20200132 |
[1] |
Guzzetti F, Reichenbach P, Ardizzone F, et al. Estimating the Quality of Landslide Susceptibility Models[J]. Geomorphology, 2006, 81(1/2): 166-184 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=48fad4b960c1a74fc8296f625162f657
|
[2] |
许强, 汤明高, 徐开祥, 等.滑坡时空演化规律及预警预报研究[J].岩石力学与工程学报, 2008, 27(6): 1 104-1 112 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yslxygcxb200806003
Xu Qiang, Tang Minggao, Xu Kaixiang, et al. Research on Space-Time Evolution Laws and Early Warning-Prediction of Landslides[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(6): 1 104-1 112 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yslxygcxb200806003
|
[3] |
张路, 廖明生, 董杰, 等.基于时间序列InSAR分析的西部山区滑坡灾害隐患早期识别:以四川丹巴为例[J].武汉大学学报·信息科学版, 2018, 43(12): 2 039-2 049 doi: 10.13203/j.whugis20180181
Zhang Lu, Liao Mingsheng, Dong Jie, et al.Early Detection of Landslide Hazards in Mountainous Areas of West China Using Time Series SAR Interferometry:A Case Study of Danba, Sichuan[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12): 2 039-2 049 doi: 10.13203/j.whugis20180181
|
[4] |
Peng Dalei, Xu Qiang, Liu Fangzhou, et al. Distribution and Failure Modes of the Landslides in Heitai Terrace, China[J]. Engineering Geology, 2018, 236: 97-110 doi: 10.1016/j.enggeo.2017.09.016
|
[5] |
Sato H P, Hasegawa H, Fujiwara S, et al. Interpretation of Landslide Distribution Triggered by the 2005 Northern Pakistan Earthquake Using SPOT‑5 Imagery[J]. Landslides, 2007, 4(2): 113-122 doi: 10.1007/s10346-006-0069-5
|
[6] |
Huang R Q, Li W L. Analysis of the Geo-hazards Triggered by the 12 May 2008 Wenchuan Earthquake, China[J]. Bulletin of Engineering Geology and the Environment, 2009, 68(3): 363-371 doi: 10.1007/s10064-009-0207-0
|
[7] |
Sun Wenyi, Tian Yuansheng, Mu Xingmin, et al. Loess Landslide Inventory Map Based on GF-1 Satellite Imagery[J]. Remote Sensing, 2017, 9(4): 1-17 http://adsabs.harvard.edu/abs/2017RemS....9..314S
|
[8] |
Martha T R, Kerle N, Jetten V, et al.Characterising Spectral, Spatial and Morphometric Properties of Landslides for Semi-automatic Detection Using Object-Oriented Methods[J].Geomorphology, 2010, 116(1/2): 24-36 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=73285a8aa7dde01ac9b3686b44396934
|
[9] |
Leshchinsky B A, Olsen M J, Tanyu B F. Contour Connection Method for Automated Identification and Classification of Landslide Deposits[J]. Computers and Geosciences, 2015, 74: 27-38 doi: 10.1016/j.cageo.2014.10.007
|
[10] |
Li Zhongbin, Shi Wenzhong, Lu Ping, et al. Landslide Mapping from Aerial Photographs Using Change Detection-Based Markov Random Field[J]. Remote Sensing of Environment, 2016, 187: 76-90 doi: 10.1016/j.rse.2016.10.008
|
[11] |
Lu Ping, Qin Yuanyuan, Li Zhongbin, et al. Remote Sensing of Environment Landslide Mapping from Multi-sensor Data Through Improved Change Detection-Based Markov Random Field[J]. Remote Sensing of Environment, 2019, 231: 1-17 http://www.sciencedirect.com/science/article/pii/S0034425719302548
|
[12] |
Stumpf A, Kerle N.Object-Oriented Mapping of Landslides Using Random Forests[J].Remote Sensing of Environment, 2011, 115(10): 2 564-2 577 doi: 10.1016/j.rse.2011.05.013
|
[13] |
van Eeckhaut M D, Kerle N, Poesen J, et al. Object-Oriented Identification of Forested Landslides with Derivatives of Single Pulse LiDAR Data[J]. Geomorphology, 2012, 11(173-174): 30-42 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e356e263b1ed7ca6f2e4c5f958c8eb84
|
[14] |
Chen Weitao, Li Xianju, Wang Yanxin, et al.Forested Landslide Detection Using LiDAR Data and the Random Forest Algorithm: A Case Study of the Three Gorges, China[J]. Remote Sensing of Environment, 2014, 152: 291-301 doi: 10.1016/j.rse.2014.07.004
|
[15] |
Gorsevski P V, Brown M K, Panter K, et al. Landslide Detection and Susceptibility Mapping Using LiDAR and an Artificial Neural Network Approach: A Case Study in the Cuyahoga Valley National Park, Ohio[J]. Landslides, 2016, 13(3): 467-484 doi: 10.1007/s10346-015-0587-0
|
[16] |
Mezaal M R, Pradhan B. An Improved Algorithm for Identifying Shallow and Deep-Seated Landslides in Dense Tropical Forest from Airborne Laser Scanning Data[J]. Catena, 2018, 167: 147-159 doi: 10.1016/j.catena.2018.04.038
|
[17] |
Hu Qiao, Zhou Yi, Wang Shixing, et al.Improving the Accuracy of Landslide Detection in "Offsite" Area by Machine Learning Model Portability Comparison:A Case Study of Jiuzhaigou[J].Remote Sensing, 2019, 11(21):2 530-2 550 doi: 10.3390/rs11212530
|
[18] |
Ghorbanzadeh O, Blaschke T, Gholamnia K, et al. Evaluation of Different Machine Learning Methods and Deep-Learning Convolutional Neural Networks for Landslide Detection[J].Remote Sensing, 2019, 11(2): 196-216 doi: 10.3390/rs11020196
|
[19] |
Ghorbanzadeh O, Meena S R, Blaschke T, et al. UAV-Based Slope Failure Detection Using Deep-learning Convolutional Neural Networks[J]. Remote Sensing, 2019, 11(17): 2 046-2 069 doi: 10.3390/rs11172046
|
[20] |
Ji Shunping, Yu Dawen, Shen Chaoyong, et al. Landslide Detection from an Open Satellite Imagery and Digital Elevation Model Dataset Using Attention Boosted Convolutional Neural Networks[J]. Landslides, 2020, 17(6): 1 337-1 352 doi: 10.1007/s10346-020-01353-2
|
[21] |
Prakash N, Manconi A, Loew S. Mapping Landslides on EO Data: Performance of Deep Learning Models vs. Traditional Machine Learning Models[J]. Remote Sensing, 2020, 12(3): 346-368 doi: 10.3390/rs12030346
|
[22] |
Sameen M I, Pradhan B. Landslide Detection Using Residual Networks and the Fusion of Spectral and Topographic Information[J]. IEEE Access, 2019, 7: 114 363-114 373 doi: 10.1109/ACCESS.2019.2935761
|
[23] |
Yu Bo, Chen Fang, Xu Chong. Landslide Detection Based on Contour-Based Deep Learning Framework in Case of National Scale of Nepal in 2015[J]. Computers and Geosciences, 2020, 135: 104 388-104 395 doi: 10.1016/j.cageo.2019.104388
|
[24] |
Guo Qinghua, Jin Shichao, Li Min, et al. Application of Deep Learning in Ecological Resource Research: Theories, Methods, and Challenges[J]. Science China Earth Sciences, 2020, DOI: 10.1007/s11430-019-9584-9
|
[25] |
He K, Gkioxari G, Dollár P, et al. Mask R-CNN[C]. 2017 IEEE International Conference on Computer Vision, Venice, Italy, 2017
|
[26] |
Wu Xiongwei, Sahoo D, Hoi S C H. Recent Advances in Deep Learning for Object Detection[J]. Neurocomputing, 2020, 396: 39-64 doi: 10.1016/j.neucom.2020.01.085
|
[27] |
He Kaiming, Zhang Xiangyu, Ren Shaoqing, et al. Deep Residual Learning for Image Recognition[C]. The IEEE Conference on Computer Vision and Pattern Recognition, Nevada, American, 2016
|
[28] |
Lin T, Dollár P, Girshick R, et al. Feature Pyramid Networks for Object Detection[C]. The IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, American, 2017
|
[29] |
Ren Shaoqing, He Kaiming, Girshick Ross, et al. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2017, 39: 1 137-1 149 http://europepmc.org/abstract/MED/27295650
|
[30] |
许强, 董秀军, 李为乐.基于空-天-地一体化的重大地质灾害隐患早期识别与监测预警[J].武汉大学学报·信息学版, 2019, 44(7):957-966 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=whchkjdxxb201907003
Xu Qiang, Dong Xiujun, Li Weile.Integrated Space-Air-Ground Early Detection, Monitoring and Warning System for Potential Catastrophic Geohazards[J]. Geomatics and Information Science of Wuhan University, 2019, 44(7): 957-966 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=whchkjdxxb201907003
|