JU Yuanzhen, XU Qiang, JIN Shichao, LI Weile, DONG Xiujun, GUO Qinghua. Automatic Object Detection of Loess Landslide Based on Deep Learning[J]. Geomatics and Information Science of Wuhan University, 2020, 45(11): 1747-1755. DOI: 10.13203/j.whugis20200132
Citation: JU Yuanzhen, XU Qiang, JIN Shichao, LI Weile, DONG Xiujun, GUO Qinghua. Automatic Object Detection of Loess Landslide Based on Deep Learning[J]. Geomatics and Information Science of Wuhan University, 2020, 45(11): 1747-1755. DOI: 10.13203/j.whugis20200132

Automatic Object Detection of Loess Landslide Based on Deep Learning

Funds: 

The Science Fund for Creative Research Groups of the National Natural Science Foundation of China 41521002

the Key Research and Development Program of the Department of Science and Technology of Sichuan Province 2019YFS0074

Sichuan Science and Technology Program 2018SZ0339

More Information
  • Author Bio:

    JU Yuanzhen, PhD candidate, specializes in geological disaster automatic detection. E-mail: 415384857@qq.com

  • Corresponding author:

    XU Qiang, PhD, professor. E-mail: xq@cdut.edu.cn

  • Received Date: March 29, 2020
  • Published Date: November 18, 2020
  •   Objectives  The knowledge of regional landslides detection plays a fundamental role in the landslide risk management. However, most of that recognition was taken manually in the past, which is rather time- and labor- consuming. As the development of technologies of remote sensing and artificial intelligence, the automatic detection of landslides becomes possible. The previous researches relative to the automatic detection of landslides utilized the machine learning methods to detect these new landslides which were significantly distinguished from their context. Compared to those landslides, the detection of old loess landslides that are not distinct from their context is more challenged. We explore the deep learning to automatically detect the old loess landslides.
      Methods  Firstly, we build a loess landslide database consists of 2 498 which are interpreted from the Google Earth images by experts. Then, we divide the database into three datasets for training, validation and test. Finally, we train Mask R-CNN object detection module with the training dataset, choose the best model by the validation dataset, and apply the best model to the test dataset.
      Results  The test results of model performance show a precision of 0.56, a recall of 0.72, and a F1-score of 0.63.
      Conclusions  The results indicate that Mask R-CNN is a robust method even for the detection of loess landslides that are unapparent from the context, and deep learning can provide the possibility for rapid and accurate regional geo-hazard investigation.
  • [1]
    Guzzetti F, Reichenbach P, Ardizzone F, et al. Estimating the Quality of Landslide Susceptibility Models[J]. Geomorphology, 2006, 81(1/2): 166-184 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=48fad4b960c1a74fc8296f625162f657
    [2]
    许强, 汤明高, 徐开祥, 等.滑坡时空演化规律及预警预报研究[J].岩石力学与工程学报, 2008, 27(6): 1 104-1 112 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yslxygcxb200806003

    Xu Qiang, Tang Minggao, Xu Kaixiang, et al. Research on Space-Time Evolution Laws and Early Warning-Prediction of Landslides[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(6): 1 104-1 112 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yslxygcxb200806003
    [3]
    张路, 廖明生, 董杰, 等.基于时间序列InSAR分析的西部山区滑坡灾害隐患早期识别:以四川丹巴为例[J].武汉大学学报·信息科学版, 2018, 43(12): 2 039-2 049 doi: 10.13203/j.whugis20180181

    Zhang Lu, Liao Mingsheng, Dong Jie, et al.Early Detection of Landslide Hazards in Mountainous Areas of West China Using Time Series SAR Interferometry:A Case Study of Danba, Sichuan[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12): 2 039-2 049 doi: 10.13203/j.whugis20180181
    [4]
    Peng Dalei, Xu Qiang, Liu Fangzhou, et al. Distribution and Failure Modes of the Landslides in Heitai Terrace, China[J]. Engineering Geology, 2018, 236: 97-110 doi: 10.1016/j.enggeo.2017.09.016
    [5]
    Sato H P, Hasegawa H, Fujiwara S, et al. Interpretation of Landslide Distribution Triggered by the 2005 Northern Pakistan Earthquake Using SPOT‑5 Imagery[J]. Landslides, 2007, 4(2): 113-122 doi: 10.1007/s10346-006-0069-5
    [6]
    Huang R Q, Li W L. Analysis of the Geo-hazards Triggered by the 12 May 2008 Wenchuan Earthquake, China[J]. Bulletin of Engineering Geology and the Environment, 2009, 68(3): 363-371 doi: 10.1007/s10064-009-0207-0
    [7]
    Sun Wenyi, Tian Yuansheng, Mu Xingmin, et al. Loess Landslide Inventory Map Based on GF-1 Satellite Imagery[J]. Remote Sensing, 2017, 9(4): 1-17 http://adsabs.harvard.edu/abs/2017RemS....9..314S
    [8]
    Martha T R, Kerle N, Jetten V, et al.Characterising Spectral, Spatial and Morphometric Properties of Landslides for Semi-automatic Detection Using Object-Oriented Methods[J].Geomorphology, 2010, 116(1/2): 24-36 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=73285a8aa7dde01ac9b3686b44396934
    [9]
    Leshchinsky B A, Olsen M J, Tanyu B F. Contour Connection Method for Automated Identification and Classification of Landslide Deposits[J]. Computers and Geosciences, 2015, 74: 27-38 doi: 10.1016/j.cageo.2014.10.007
    [10]
    Li Zhongbin, Shi Wenzhong, Lu Ping, et al. Landslide Mapping from Aerial Photographs Using Change Detection-Based Markov Random Field[J]. Remote Sensing of Environment, 2016, 187: 76-90 doi: 10.1016/j.rse.2016.10.008
    [11]
    Lu Ping, Qin Yuanyuan, Li Zhongbin, et al. Remote Sensing of Environment Landslide Mapping from Multi-sensor Data Through Improved Change Detection-Based Markov Random Field[J]. Remote Sensing of Environment, 2019, 231: 1-17 http://www.sciencedirect.com/science/article/pii/S0034425719302548
    [12]
    Stumpf A, Kerle N.Object-Oriented Mapping of Landslides Using Random Forests[J].Remote Sensing of Environment, 2011, 115(10): 2 564-2 577 doi: 10.1016/j.rse.2011.05.013
    [13]
    van Eeckhaut M D, Kerle N, Poesen J, et al. Object-Oriented Identification of Forested Landslides with Derivatives of Single Pulse LiDAR Data[J]. Geomorphology, 2012, 11(173-174): 30-42 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e356e263b1ed7ca6f2e4c5f958c8eb84
    [14]
    Chen Weitao, Li Xianju, Wang Yanxin, et al.Forested Landslide Detection Using LiDAR Data and the Random Forest Algorithm: A Case Study of the Three Gorges, China[J]. Remote Sensing of Environment, 2014, 152: 291-301 doi: 10.1016/j.rse.2014.07.004
    [15]
    Gorsevski P V, Brown M K, Panter K, et al. Landslide Detection and Susceptibility Mapping Using LiDAR and an Artificial Neural Network Approach: A Case Study in the Cuyahoga Valley National Park, Ohio[J]. Landslides, 2016, 13(3): 467-484 doi: 10.1007/s10346-015-0587-0
    [16]
    Mezaal M R, Pradhan B. An Improved Algorithm for Identifying Shallow and Deep-Seated Landslides in Dense Tropical Forest from Airborne Laser Scanning Data[J]. Catena, 2018, 167: 147-159 doi: 10.1016/j.catena.2018.04.038
    [17]
    Hu Qiao, Zhou Yi, Wang Shixing, et al.Improving the Accuracy of Landslide Detection in "Offsite" Area by Machine Learning Model Portability Comparison:A Case Study of Jiuzhaigou[J].Remote Sensing, 2019, 11(21):2 530-2 550 doi: 10.3390/rs11212530
    [18]
    Ghorbanzadeh O, Blaschke T, Gholamnia K, et al. Evaluation of Different Machine Learning Methods and Deep-Learning Convolutional Neural Networks for Landslide Detection[J].Remote Sensing, 2019, 11(2): 196-216 doi: 10.3390/rs11020196
    [19]
    Ghorbanzadeh O, Meena S R, Blaschke T, et al. UAV-Based Slope Failure Detection Using Deep-learning Convolutional Neural Networks[J]. Remote Sensing, 2019, 11(17): 2 046-2 069 doi: 10.3390/rs11172046
    [20]
    Ji Shunping, Yu Dawen, Shen Chaoyong, et al. Landslide Detection from an Open Satellite Imagery and Digital Elevation Model Dataset Using Attention Boosted Convolutional Neural Networks[J]. Landslides, 2020, 17(6): 1 337-1 352 doi: 10.1007/s10346-020-01353-2
    [21]
    Prakash N, Manconi A, Loew S. Mapping Landslides on EO Data: Performance of Deep Learning Models vs. Traditional Machine Learning Models[J]. Remote Sensing, 2020, 12(3): 346-368 doi: 10.3390/rs12030346
    [22]
    Sameen M I, Pradhan B. Landslide Detection Using Residual Networks and the Fusion of Spectral and Topographic Information[J]. IEEE Access, 2019, 7: 114 363-114 373 doi: 10.1109/ACCESS.2019.2935761
    [23]
    Yu Bo, Chen Fang, Xu Chong. Landslide Detection Based on Contour-Based Deep Learning Framework in Case of National Scale of Nepal in 2015[J]. Computers and Geosciences, 2020, 135: 104 388-104 395 doi: 10.1016/j.cageo.2019.104388
    [24]
    Guo Qinghua, Jin Shichao, Li Min, et al. Application of Deep Learning in Ecological Resource Research: Theories, Methods, and Challenges[J]. Science China Earth Sciences, 2020, DOI: 10.1007/s11430-019-9584-9
    [25]
    He K, Gkioxari G, Dollár P, et al. Mask R-CNN[C]. 2017 IEEE International Conference on Computer Vision, Venice, Italy, 2017
    [26]
    Wu Xiongwei, Sahoo D, Hoi S C H. Recent Advances in Deep Learning for Object Detection[J]. Neurocomputing, 2020, 396: 39-64 doi: 10.1016/j.neucom.2020.01.085
    [27]
    He Kaiming, Zhang Xiangyu, Ren Shaoqing, et al. Deep Residual Learning for Image Recognition[C]. The IEEE Conference on Computer Vision and Pattern Recognition, Nevada, American, 2016
    [28]
    Lin T, Dollár P, Girshick R, et al. Feature Pyramid Networks for Object Detection[C]. The IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, American, 2017
    [29]
    Ren Shaoqing, He Kaiming, Girshick Ross, et al. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2017, 39: 1 137-1 149 http://europepmc.org/abstract/MED/27295650
    [30]
    许强, 董秀军, 李为乐.基于空-天-地一体化的重大地质灾害隐患早期识别与监测预警[J].武汉大学学报·信息学版, 2019, 44(7):957-966 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=whchkjdxxb201907003

    Xu Qiang, Dong Xiujun, Li Weile.Integrated Space-Air-Ground Early Detection, Monitoring and Warning System for Potential Catastrophic Geohazards[J]. Geomatics and Information Science of Wuhan University, 2019, 44(7): 957-966 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=whchkjdxxb201907003

Catalog

    Article views PDF downloads Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return