Citation: | FAN Heng, XU Jun, DENG Yong, XIANG Jinhai. Behavior Recognition of Human Based on Deep Learning[J]. Geomatics and Information Science of Wuhan University, 2016, 41(4): 492-497. DOI: 10.13203/j.whugis20140110 |
[1] |
Niu F, Abdel-Mottaleb M. HMM-based Segmentation and Recognition of Human Activities from Video Sequences[C]. IEEE International Conference on Multimedia and Expo, Amsterdam, Netherlands, 2005
|
[2] |
Zhou Hanning, Kimber D. Unusual Event Detection via Multi-Camera Video Mining[C]. 18th International Conference on Pattern Recognition, Hong Kong, China, 2006
|
[3] |
Wu Xinyu, Ou Yongsheng, Qian Huihuan, et al. A Detection System for Human Abnormal Behavior[C]. 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems, Beijing, China, 2005
|
[4] |
Chen Yufeng, Liang Guoyuan, Lee K K, et al. Abnormal Behavior Detection by Multi-SVM-based Bayesian Network[C]. International Conference on Information Acquisition, Guangzhou, China, 2007
|
[5] |
Wei Xiaoli,Shen Weiming. Gabor-MRF Model Based on Color Texture Image Segmentation[J]. Geomatics and Information Science of Wuhan University, 2010, 35(8):955-958(魏小莉,沈未名. 一种基于马尔科夫随机场模型的彩色纹理图像分割[J]. 武汉大学学报·信息科学版, 2010, 35(8):955-958)
|
[6] |
Yang Lujing,Wang Deshi,Li Yu. A SAR Image Shadow Modeling and Classification Method Based on HMM and Chain Code[J]. Geomatics and Information Science of Wuhan University, 2010, 35(2):215-218(杨露菁,王德石,李煜. 利用边界链编码和HMM进行SAR图像阴影建模和分类[J]. 武汉大学学报·信息科学版, 2010, 35(2):215-218)
|
[7] |
Cai D, He X, Han J. Using Graph Model for Face Analysis[OL]. http://www.cad.zju.edu.cn/home/dengcai/Publication/TR/UIUCDCS-R-2005-2636.pdf, 2005
|
[8] |
Kosmopoulos D I, Voulodimos A S, Varvarigou T A. Behavior Recognition from Multiple Views Using Fused Hidden Markov Models[M]. Berlin:Springer-Verlag, 2010
|
[9] |
Zhang Fan, Guo Li, Lu Haixian, et al. Star Skeleton for Human Behavior Recognition[C]. IEEE International Conference on Audio, Language and Image Processing, Shanghai, China,2012
|
[10] |
Meng Y, Jin Y, Yin J. Modeling Activity-dependent Plasticity in Bcm Spiking Neural Networks with Application to Human Behavior Recognition[J]. IEEE Transactions on Neural Networks, 2011, 22(12):1952-1966
|
[11] |
Dollár P, Rabaud V, Cottrell G, et al. Behavior Recognition via Sparse Spatio-temporal Features[C]. IEEE International Workshop on Joint, Beijing, 2005
|
[12] |
Hinton G E, Salakhutdinov R R. Reducing the Dimensionality of Data with Neural Networks[J]. Science, 2006, 313(5786):504-507
|
[13] |
Baccouche M, Mamalet F, Wolt C, et al. Sequential Deep Learning for Human Action Recognition[M]//Human Behavior Understanding, Berlin:Springer-Verlag, 2011:29-39
|
[14] |
Abdi J, Nekoui M A. Determined Prediction of Nonlinear Time Series via Emotion Temporal Difference Learning[C]. Control and Decision Conference, Yantai, China, 2008
|
[15] |
Ning Huazhong, Xu Wei, Zhou Yue, et al. Temporal Difference Learning to Detect Unsafe System States[C]. IEEE International Conference on pattern Recognition, Tampa, USA, 2008
|
[16] |
Chen C C, Aggarwal J K. An Adaptive Background Model Initialization Algorithm with Objects Moving At Different Depths[C]. IEEE International Conference on Image Processing, San Diego, USA, 2008
|
[17] |
Stauffer C, Grimson W E L. Adaptive Background Mixture Model for Real-time Tracking[C]. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Seattle, Washington, USA, 1999
|
[18] |
Hinton G E, Osindero S, Teh Y W. A Fast Learning Algorithm for Deep Belief Nets[J]. Neural Computation, 2006, 18(7):1527-1554
|
[19] |
Hinton G E, Dayan P, Frey B J, et al. The "Wake-sleep" Algorithm for Unsupervised Neural Networks[J]. Science, 1995, 268:1158-1161
|
[20] |
Fathi A, Mori G. Action Recognition by Learning Mid-level Motion Features[C]. IEEE International Conference on Computer Vision and Pattern Recognition, Anchorage, USA, 2008
|
[21] |
Gilbert A, Illingworth J, Bowden R. Fast Realistic Multi-Action Recognition Using Mined Dense Spatio-Temporal Features[C]. IEEE International Conference on Computer Vision, Kyoto, Japan, 2009
|
[22] |
Bregonzio M, Gong S, Xiang T. Recognising Action as Clouds of Space-time Interest Points[C]. IEEE International Conference on Computer Vision and Pattern Recognition, Miami, USA, 2009
|
[23] |
Laptev I, Marszalek M, Schmid C, et al. Learning Realistic Human Actions from Movies[C]. IEEE International Conference on Computer Vision and Pattern Recognition, Anchorage, USA, 2008
|