Citation: | ZHANG Liqiang, LI Yang, HOU Zhengyang, LI Xingang, GENG Hao, WANG Yuebin, LI Jingwen, ZHU Panpan, MEI Jie, JIANG Yanxiao, LI Shuaipeng, XIN Qi, CUI Ying, LIU Suhong. Deep Learning and Remote Sensing Data Analysis[J]. Geomatics and Information Science of Wuhan University, 2020, 45(12): 1857-1864. DOI: 10.13203/j.whugis20200650 |
[1] |
李德仁, 张良培, 夏桂松.遥感大数据自动分析与数据挖掘[J].测绘学报, 2014, 43(12): 1 211-1 216 http://www.cnki.com.cn/Article/CJFDTotal-CHXB201412002.htm
Li Deren, Zhang Liangpei, Xia Guisong. Automatic Analysis and Mining of Remote Sensing Big Data[J]. Acta Geodaetica et Cartographica Sinica, 2014, 43(12): 1 211-1 216 http://www.cnki.com.cn/Article/CJFDTotal-CHXB201412002.htm
|
[2] |
Markus R, Gustau C, Bjorn S, et al.Deep Learning and Process Understanding for Data-Driven Earth System Science[J]. Nature, 2019, 566: 195-204 doi: 10.1038/s41586-019-0912-1
|
[3] |
Sun C, Shrivastava A, Singh1 S, et al. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era[C].IEEE International Conference on Computer Vision, Venice, Italy, 2017
|
[4] |
Liu Fangyu, Li Shuaipeng, Zhang Liqiang, et al.3DCNN-DQN-RNN: A Deep Reinforcement Learning Framework for Semantic Parsing of Large-scale 3D Point Clouds[C].IEEE International Conference on Computer Vision, Venice, Italy, 2017
|
[5] |
Bischke B, Helber P, Folz J, et al.Multi-task Learning for Segmentation of Building Footprints with Deep Neural Networks[C].IEEE International Conference on Image Processing, Taipei, China, 2019
|
[6] |
He K, Gkioxari G, Dollar P, et al. Mask R-CNN[C]. IEEE International Conference on Computer Vision, Venice, Italy, 2017
|
[7] |
Lin T Y, Dollár P, Girshick R, et al. Feature Pyramid Networks for Object Detection[C]. IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017
|
[8] |
Bertelli L, Yu T, Vu D, et al. Kernelized Structural SVM Learning for Supervised Object Segmentation[J]. Communications in Computer & Information Science, 2011, 32(14):2 153-2 160
|
[9] |
Yang J, Yang M H. Top-down Visual Saliency via Joint CRF and Dictionary Learning[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(3): 576-588 doi: 10.1109/TPAMI.2016.2547384
|
[10] |
Mei J, Wang Y, Zhang L, et al.PSASL:Pixel-Level and Superpixel-Level Aware Subspace Learning for Hyperspectral Image Classification[J].IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(7):1-16 doi: 10.1109/TGRS.2019.2923175
|
[11] |
Lee H, Kwon H.Going Deeper with Contextual CNN for Hyperspectral Image Classification[J]. IEEE Transactions on Image Processing, 2017, 26(10): 4 843-4 855 doi: 10.1109/TIP.2017.2725580
|
[12] |
Zhong P, Gong Z, Li S, et al.Learning to Diversify Deep Belief Networks for Hyperspectral Image Classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(6):3 516-3 530 doi: 10.1109/TGRS.2017.2675902
|
[13] |
薛澜, 翁凌飞.中国实现联合国2030年可持续发展目标的政策机遇和挑战[J].中国软科学, 2017, 1: 1-12 http://www.cnki.com.cn/Article/CJFDTotal-ZGRK201701001.htm
Xue Lan, Weng Lingfei.The Policy Opportunities and Challenges in China's Implementation of 2030 Sustainable Development Goals[J].China Soft Science, 2017, 1: 1-12 http://www.cnki.com.cn/Article/CJFDTotal-ZGRK201701001.htm
|
[14] |
林万达.从数据造假现象讨论微妙的央地经济关系及其重塑与调整[J].中国市场, 2018, 973(18): 28-30 http://www.cnki.com.cn/Article/CJFDTotal-SCZG201818007.htm
Lin Wanda. Discussion on Subtle Central-local Economic Relations and Their Reshaping and Adjustment from the Phenomenon of Data Falsification[J].China Market, 2018, 973(18): 28-30 http://www.cnki.com.cn/Article/CJFDTotal-SCZG201818007.htm
|
[15] |
王欢, 郑旷怡.部分省份近期调整统计数据的原因简析.中国市场, 2018, 36: 10-12 http://www.cnki.com.cn/Article/CJFDTotal-SCZG201836003.htm
Wang Huan. Zheng Kuangyi. Analysis for Recent Adjustment of Statistical Data in Some Provinces[J]. China Market, 2018, 36: 10-12 http://www.cnki.com.cn/Article/CJFDTotal-SCZG201836003.htm
|
[16] |
Yeh C, Perez A, Driscoll A, et al. Using Publicly Available Satellite Imagery and Deep Learning to Understand Economic Well-Being in Africa[J]. Nature Communications, 2020, 11:2 583 doi: 10.1038/s41467-020-16185-w
|
[17] |
Jean N, Burke M, Xie M, et al. Combining Satellite Imagery and Machine Learning to Predict Poverty[J]. Science, 2016, 353(6 301):790-794 doi: 10.1126/science.aaf7894
|
[18] |
Zhao Z, Zhang Y, Liu L, et al. Recent Changes in Wetlands on the Tibetan Plateau:A Review[J].Journal of Geographical Sciences, 2015, 25(7): 879-896 doi: 10.1007/s11442-015-1208-5
|
[19] |
Pekel J F, Cottam A, Gorelick N, et al.High-Resolution Mapping of Global Surface Water and Its Long-Term Changes[J].Nature, 2016, 540(7 633): 418-422 doi: 10.1038/nature20584
|
[20] |
Mao D, Wang Z, Du B, et al. National Wetland Mapping in China: A New Product Resulting from Object-Based and Hierarchical Classification of Landsat 8 OLI Images[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 164: 11-25 doi: 10.1016/j.isprsjprs.2020.03.020
|
[21] |
Lei Y, Zhu Y, Wang B, et al. Extreme Lake Level Changes on the Tibetan Plateau Associated with the 2015/2016 El Niño[J]. Geophysical Research Letters, 2019, 46(11): 5 889-5 898 doi: 10.1029/2019GL081946
|