ZHU Xiuli, ZHAO Yong, LIU Wanzeng, LI Ran, ZHAO Tingting, PENG Yunlu. Geographic Information Rapid Mapping System for Emergency[J]. Geomatics and Information Science of Wuhan University, 2020, 45(8): 1303-1311. DOI: 10.13203/j.whugis20200139
Citation: ZHU Xiuli, ZHAO Yong, LIU Wanzeng, LI Ran, ZHAO Tingting, PENG Yunlu. Geographic Information Rapid Mapping System for Emergency[J]. Geomatics and Information Science of Wuhan University, 2020, 45(8): 1303-1311. DOI: 10.13203/j.whugis20200139

Geographic Information Rapid Mapping System for Emergency

Funds: 

The National Key Research and Development Program of China 2016YFC0803109

the National Science and Technology Basic Resource Investigation Program of China 2019FY202500

More Information
  • Author Bio:

    ZHU Xiuli, master, senior engineer, specializes in geographic information emergency, GIS engineering and cartography.zhuxiuli@ngcc.cn

  • Corresponding author:

    ZHAO Yong, master, senior engineer.zhaoyong@ngcc.cn

  • Received Date: March 31, 2020
  • Published Date: August 04, 2020
  •   Objectives   Natural disasters in China are characterized by many kinds, wide distribution, high frequency, and high intensity, which often cause huge losses. Therefore, effective prevention of disasters, timely understanding of disaster information, and scientific reduction of disaster losses are of great significance to the safety of people’s lives and property. In the process of disaster prevention and control, emergency survey and mapping support mainly play an indispensable role through provide geographic information rapid mapping service. Emergency disaster rapid mapping is highly time-sensitive and generally requires services to be provided within a few hours or less, but conventional mapping methods are difficult to meet demand (1-2 days or even longer). Our purpose is to improve the efficiency of emergency mapping and to provide support for the rapidly emergency mapping service in different stages, including emergency rescue, disaster assessment, post-disaster reconstruction, etc.
      Methods   To solve the problem of randomness and efficiency of emergency mapping, three technologies were introduced: The knowledge decomposition and matching of rapid mapping for an emergency, the rapid and dynamic integration of emergency thematic data, and the adaptive fast mapping of multi-factor triggered mapping rules. The first technology decomposed knowledge of rapid mapping for an emergency to the symbol, label, rule of mapping, decoration and so on, and further subdivided them. So as to form the building blocks of cartography knowledge and provide components for building the cartography with specific needs, and to realize multiple associations and integrated storage of emergency data and mapping knowledge. The second technology integrated the natural language processing and word segmentation technology with the spatial information in the disaster information and proposed the spatial matching method of place names and addresses based on the statistical model, which realized the rapid integration of disaster information.The third technology took emergencies as the first driving mapping factor and map elements as the second mapping factor. By the spiraling means, it automatically determined the elements of map such as the location, range, map type, layout size, scale, projection, data source type, symbol and annotation, map conflict processing, and decorations step by step, to realize the automation of emergency map process.
      Results   With the support of the first two technologies, we constructed an integrated emergency mapping database, which includes various multi-level scale basic geographic information data, disaster data, emergency thematic data, symbols, mapping rules, and the strategy. Based on the integrated emergency mapping database and adaptive fast mapping technology of multi-factor trigger rules, the research and development of geographic information emergency rapid mapping system was completed, which could realize fast, flexible, automatic map production to meet the demands of rapid mapping of basic geographic information and emergency thematic information.
      Conclusions   The key technology and system of emergency rapid mapping achieve the goal of efficient mapping, which reduces the mapping time of a single emergency map to 10-15 minutes. It has been applied in the emergency support of mountain landslide in the Maoxian County, Jiuzhaigou earthquake, mountain landslide in the Milin Section of the Yarlung Zangbo River, and other emergencies, provided standardized and efficient cartographic services for disaster prevention and mitigation.
  • [1]
    范维澄, 闪淳昌.公共安全与应急管理[M].北京:科学出版社, 2017

    Fan Weicheng, Shan Chunchang. Public Safety and Emergency Management[M].Beijing:Science Press, 2017
    [2]
    刘纪平, 张用川, 徐胜华, 等.一体化综合减灾智能服务顶层设计研究[J].武汉大学学报·信息科学版, 2018, 43(12): 2 250-2 258 doi: 10.13203/j.whugis20180309

    Liu Jiping, Zhang Yongchuan, Xu Shenghua, et al. Top-Level Design Study for the Integrated Disaster Reduction Intelligent Service [J].Geomatics and Information Science of Wuhan University, 2018, 43(12): 2 250-2 258 doi: 10.13203/j.whugis20180309
    [3]
    朱庆, 曹振宇, 林珲, 等.应急测绘保障体系若干关键问题研究[J].武汉大学学报·信息科学版, 2014, 39(5): 551-555 doi: 10.13203/j.whugis20130351

    Zhu Qing, Cao Zhenyu, Lin Hui, et al. Key Technologies of Emergency Surveying and Mapping Service System[J].Geomatics and Information Science of Wuhan University, 2014, 39(5):551-555 doi: 10.13203/j.whugis20130351
    [4]
    国家测绘地理信息局.国家测绘应急保障预案[EB/OL]. [2020-01-11].http:∥www.Sbsm.gov.cn/article/chdlxxyjbzfw/201501/20150100021410.Shtml

    National Bureau of Surveying and Mapping Geographic Information. National Emergency Plan for Surveying and Mapping[EB/OL].[2020-01-11].http:∥www.Sbsm.gov.cn/article/chdlxxyjbzfw/201501/20150100021410.Shtml
    [5]
    邢永康, 马少平.统计语言模型综述[J].计算机科学, 2003(9):22-26 doi: 10.3969/j.issn.1002-137X.2003.09.006

    Xing Yongkang, Ma Shaoping. A Survey on Statistical Language Models[J].Computer Science, 2003(9):22-26 doi: 10.3969/j.issn.1002-137X.2003.09.006
    [6]
    王东华, 刘建军, 张元杰, 等.国家基础地理信息数据库升级改造的思考[J].地理信息世界, 2018, 25(2):1-6 doi: 10.3969/j.issn.1672-1586.2018.02.001

    Wang Donghua, Liu Jianjun, Zhang Yuanjie, et al. Thoughts on Upgrading of National Fundamental Geographic Information Database [J]. Geomatics World, 2018, 25(2):1-6 doi: 10.3969/j.issn.1672-1586.2018.02.001
    [7]
    第十届全国人民代表大会常务委员会.中华人民共和国突发事件应对法[S].北京: 中国法制出版社, 2007

    The Standing Committee of the 10th National People's Congress. Emergency Response Law of the People's Republic of China[S].Beijing: China Legal Publishing House, 2007
    [8]
    孝金波, 2019年国内地震正式速报比2018年减少88秒[EB/OL]. [2020-01-11].人民网, http://society.people.com.cn/n1/2020/0111/c1008-31544085.html

    Xiao Jinbo.The Formal Quick Report of Domestic Earthquake in 2019 is 88 Seconds Less than That in 2018[EB/OL].[2020-01-11]. People's Daily, http://society.people.com.cn/n1/2020/0111/c1008-31544085.html
    [9]
    全国地理信息标准化技术委员会.国家基本比例尺地图图式: GB/T 20257-2017[S].北京: 中国标准出版社, 2017

    National Standardization Technical Committee of Geomatics. Cartographic Symbols for National Fundamental Scale Maps: GB/T 20257-2017[S].Beijing: Chinese Standard Press, 2017
    [10]
    全国地理信息标准化技术委员会.基础地理信息分类与代码: GB/T 13923-2006[S].北京: 中国标准出版社, 2006

    National Standardization Technical Committee of Geomatics. Classification and Code of Basic Geographic Information: GB/T 13923-2006[S].Beijing: Chinese Standard Press, 2006
    [11]
    张文元, 许妙忠.基于规则库的目视航图自动化制图[J].测绘科学, 2011, 36(1): 160-163 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=chkx201101053

    Zhang Wenyuan, Xu Miaozhong. Automatic Cartography for VFR Aeronautical Charts Based on Rule Database[J]. Science of Surveying and Mapping, 2011, 36(1): 160-163 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=chkx201101053
    [12]
    席楠, 杨天青, 姜立新.地震应急专题制图规则及其领域本体模型研究[J].震灾防御技术, 2016, 11(2): 384-395 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zzfyjs201602022

    Xi Nan, Yang Tianqing, Jiang Lixin. The Research of Earthquake Emergency Thematic Mapping Rules and Its Domain Ontology [J]. Technology for Earthquake Disaster Prevention, 2016, 11(2): 384-395 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zzfyjs201602022
    [13]
    国家测绘地理信息局.基础地理信息应急制图规范: CH/T 4018-2013[S].北京: 测绘出版社, 2014

    National Bureau of Surveying and Mapping Geographic Information. The Standard for Emergency Mapping of Basic Geographic Information: CH/T 4018-2013[S]. Beijing: Surveying and Mapping Press, 2014
    [14]
    李霖, 于忠海, 朱海红, 等.地图要素图形冲突处理方法:以线状要素(道路、水系和境界)为例[J].测绘学报, 2015, 44(5):563-569

    Li Lin, Yu Zhonghai, Zhu Haihong, et al. Handling Graphic Conflicts Between Cartographic Features: Exemplifying Geolinear Features(Road, River and Boundary) [J]. Acta Geodaetica et Cartographica Sinica, 2015, 44(5):563-569
    [15]
    朱秀丽, 刘万增, 吴晨琛, 等.公益性地图自适应快速制作技术[J].测绘通报, 2019(6): 136-139 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=chtb201906030

    Zhu Xiuli, Liu Wanzeng, Wu Chenchen, et al. Technology of Public Welfare Map Adaptively and Quickly Producting[J]. Bulletin of Surveying and Mapping, 2019(6): 136-139 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=chtb201906030
    [16]
    赵国成, 徐立, 阚映红.面向规则聚合的地图制图模板设计与实现[J].测绘科学技术学报, 2014, 31(2):216-220 doi: 10.3969/j.issn.1673-6338.2014.02.025

    Zhao Guocheng, Xu Li, Kan Yinghong.The Design and Implementation of Mapping Template for Mapping Rules Aggregation[J].Journal of Geomatics Science and Technology, 2014, 31(2):216-220 doi: 10.3969/j.issn.1673-6338.2014.02.025
  • Related Articles

    [1]ZHAO Binbin, XIE Jianxiang, ZHANG Hongkui, WANG Liwei, WANG Qian. Geographic Line Extraction Algorithm Based on Morphing Transformation Techniques[J]. Geomatics and Information Science of Wuhan University, 2025, 50(1): 174-183. DOI: 10.13203/j.whugis20220493
    [2]WANG Pengxin, CHEN Chi, ZHANG Yue, ZHANG Shuyu, LIU Junming. Estimation of Winter Wheat Yield Using Assimilated Bi-variables and PCA-Copula Method[J]. Geomatics and Information Science of Wuhan University, 2022, 47(8): 1201-1212. DOI: 10.13203/j.whugis20220038
    [3]XIE Yanxin, WU Xiaocheng, HU Xiong. Using One-Dimensional Variational Assimilation Algorithm to Obtain Atmospheric Refractive Index from Ground-Based GPS Phase Delay[J]. Geomatics and Information Science of Wuhan University, 2018, 43(7): 1042-1047. DOI: 10.13203/j.whugis20160238
    [4]LI Jingzhong, ZHANG Jinming. A Morphing Method for Smooth Area Features Based on Fourier Transform[J]. Geomatics and Information Science of Wuhan University, 2017, 42(8): 1104-1109. DOI: 10.13203/j.whugis20150157
    [5]OU Ming, ZHEN Weimin, XU Jisheng, YU Xiao, LIU Yiwen, LIU Dun. Regional Ionospheric TEC Reconstruction by Data Assimilation Technique[J]. Geomatics and Information Science of Wuhan University, 2017, 42(8): 1075-1081. DOI: 10.13203/j.whugis20150297
    [6]WANG Hongwei, HUANG Chunlin, HOU Jinliang, LI Xiaoying. Estimation of Snow Depth from Multi-source Data Fusion Based on Data Assimilation Algorithm[J]. Geomatics and Information Science of Wuhan University, 2016, 41(6): 848-852. DOI: 10.13203/j.whugis20140568
    [7]SONG Fucheng, SHI Shuangshuang, FENG Jiandi. Construction of Ionospheric TEC Assimilation Model Based on Chapman Function[J]. Geomatics and Information Science of Wuhan University, 2016, 41(6): 784-790. DOI: 10.13203/j.whugis20150101
    [8]ZHANG Xianfeng, ZHAO Jiepeng. System for Soil Moisture Retrieval and Data Assimilation from Remotely Sensed Data in Arid Regions[J]. Geomatics and Information Science of Wuhan University, 2012, 37(7): 794-799.
    [9]WU Mingguang, LUE Guonian, CHEN Taisheng. Data Structure Assimilation of Marker Symbol[J]. Geomatics and Information Science of Wuhan University, 2011, 36(2): 239-243.
    [10]CHEN Rongyuan, LIU Guoying, WANG Leiguang, QIN Qianqing. Fusion Algorithm of Multispectral and Panchromatic Images Based on the Data Assimilation[J]. Geomatics and Information Science of Wuhan University, 2009, 34(8): 919-923.
  • Cited by

    Periodical cited type(13)

    1. 杨忠荣. 低成本车载RTK高精度定位方法. 地理空间信息. 2025(03): 96-100 .
    2. 程建华,陈思成,臧楠,程思翔,赵国晶,马子凡. 附加自适应短时高程变化率约束的PPP/INS紧组合增强模型. 测绘学报. 2024(09): 1761-1776 .
    3. 王勋,崔先强,高天杭. 动力学模型自适应滤波算法研究. 武汉大学学报(信息科学版). 2023(05): 741-748 .
    4. 张一,尹潇,宋海娜. 运动方向约束的自适应SRUKF目标跟踪算法. 导航定位学报. 2023(05): 53-59 .
    5. 李清泉,吕世望,陈智鹏,殷煜,张德津. 冬奥会国家速滑馆超大地坪平整度快速测量. 武汉大学学报(信息科学版). 2022(03): 325-333 .
    6. 辜声峰,戴春齐,何成鹏,方礼喆,王梓豪. 面向城市车载导航的多系统PPP-RTK/VIO半紧组合算法性能分析. 武汉大学学报(信息科学版). 2021(12): 1852-1861 .
    7. 陶晓晓,卢小平,路泽忠,周雨石,余振宝. WiFi融合环境光定位方法研究. 测绘科学. 2020(06): 57-61+72 .
    8. 张辰东,王兆瑞. 一种长隧道内高速列车实时高精度定位方法. 计算机仿真. 2020(09): 124-128+188 .
    9. 尹潇,柴洪洲,向民志,杜祯强. 附加运动学约束的BDS抗差UKF导航算法. 测绘学报. 2020(11): 1399-1406 .
    10. 王诒国,潘孝星. 基于马氏距离的抗差卡尔曼滤波算法在组合导航中的应用. 北京测绘. 2020(12): 1810-1814 .
    11. 吕大千,曾芳玲,欧阳晓凤,于合理. 时频传递的改进整数相位钟方法. 测绘学报. 2019(07): 889-897 .
    12. 邓中亮,尹露,唐诗浩,刘延旭,宋汶轩. 室内定位关键技术综述. 导航定位与授时. 2018(03): 14-23 .
    13. 张迪,施昆,李照永. 移动测量系统的GNSS/INS组合定位方法的对比研究. 软件. 2018(08): 110-116 .

    Other cited types(18)

Catalog

    Article views (1493) PDF downloads (176) Cited by(31)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return