ZHU Huizhong, LI Jun, XU Aigong, ZHEN Jie, LEI Xiaoting. High-Precision BDS Augmented Positioning Method for Disaster Emergency Environment on Smart Device[J]. Geomatics and Information Science of Wuhan University, 2020, 45(8): 1155-1167. DOI: 10.13203/j.whugis20200123
Citation: ZHU Huizhong, LI Jun, XU Aigong, ZHEN Jie, LEI Xiaoting. High-Precision BDS Augmented Positioning Method for Disaster Emergency Environment on Smart Device[J]. Geomatics and Information Science of Wuhan University, 2020, 45(8): 1155-1167. DOI: 10.13203/j.whugis20200123

High-Precision BDS Augmented Positioning Method for Disaster Emergency Environment on Smart Device

Funds: 

The National Key Research and Development Program of China 2016YFC0803102

More Information
  • Author Bio:

    ZHU Huizhong, PhD, associate professor, specializes in BDS high-precision positioning.zhuhuizhong@whu.edu.cn

  • Received Date: January 28, 2020
  • Published Date: August 04, 2020
  •   Objective   The uncertainty of influencing factors of BDS positioning is great in the disaster environment and emergency scene. The applicability and maneuverability of receiver in disaster emergency environment may not meet the needs of positioning. Therefore, the method of augmented positioning between long range stations on smart device was researched to meet the demand high-precision positioning in disaster emergency environment. The augmented positioning algorithm is convenient for high efficiency and easy to realize, and the user can use a very flexible data processing method.
      Methods   The un-difference error corrections between long-range reference stations was used of augmented positioning. The satellite clock error was eliminated and the atmospheric error and satellite orbit error can be weakened by the un-difference error corrections. The augmented positioning of user including pseudo-range, carrier phase and carrier phase smoothing pseudo-range between long range stations were achieved. And the demand of high-precision positioning of long range was meted by corrections of classified errors. The method of carrier phase smoothing pseudo-range by un-difference error corrections was used. The integer ambiguity was estimated by observations with eliminating errors and the pseudo-range was recalculated by the simple smoothing formula. The user station errors were removed or corrected by the reference station smoothing error corrections.The pseudo-range observations do not involve ambiguity with simple positioning mode and high- real-time performance, at the same time the accuracy of pseudo-range positioning can be improved by carrier phase observations. And this method can be better applied to the demand for high-precision positioning in disaster environment. The augmented positioning for specific receiver equipment was also integrated in the smart device.
      Results   Three reference stations between long range together with smart device and receiver in North China were used to test the augmented positioning. The positioning accuracy of dm or cm can be obtained by augmented positioning with pseudo-range and carrier phase smoothing of receiver, the accuracy on cm level obtained with carrier phase. The smart device can get the position on dm level of horizontal with carrier phase smoothing augmented positioning, and the augmented positioning with carrier phase was able to achieve the accuracy on cm level by fixed ambiguity or float ambiguity. The kinematic augmented positioning of smart device can get the positioning accuracy better than 1 meter with the test at Liaoning.
      Conclusions   The smart device can be used as the source of observation and the carrier of data processing for user receiver positioning. The results indicate that the method can achieve high-precision positioning with real-time dynamic centimetre, decimetre and sub-meter levels better than 1 meter.
  • [1]
    高星伟, 陈锐志, 赵春梅.网络RTK算法研究与实验[J].武汉大学学报·信息科学版, 2009, 34(11):1 350-1 353 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=whchkjdxxb200911022

    Gao Xingwei, Chen Ruizhi, Zhao Chunmei.A Network RTK Algorithm and Its Test[J].Geomatics and Information Science of Wuhan University, 2009, 34(11):1 350-1 353 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=whchkjdxxb200911022
    [2]
    祝会忠.基于非差误差改正数的长距离单历元GNSS网络RTK算法研究[D].武汉: 武汉大学, 2012

    Zhu Huizhong.The Study of GNSS Network RTK Algorithm Between Long Range at Single Epoch- Using Un-difference Error Corrections[D].Wuhan: Wuhan University, 2012
    [3]
    Zou Xuan, Ge Maorong, Tang Weiming, et al.URTK: Undifferenced Network RTK Positioning[J].GPS Solution, 2013, 17:283-293 https://www.researchgate.net/publication/257493162_URTK_undifferenced_network_RTK_positioning
    [4]
    Ge M, Zou X, Dick G, et al.An Alternative Network RTK Approach Based on Undifferenced Observation Corrections[C]. ION GNSS, Protland, Oregon, 2010
    [5]
    祝会忠, 刘经南, 唐卫明, 等.长距离网络RTK基准站间整周模糊度单历元确定方法[J].测绘学报, 2012, 41(3):359-365 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=chxb201203009

    Zhu Huizhong, Liu Jingnan, Tang Weiming, et al.The Algorithm of Single-Epoch Integer Ambiguity Resolution Between Long-Range Network RTK Base Stations [J].Acta Geodaetica et Cartographica Sinica, 2012, 41(3):359-365 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=chxb201203009
    [6]
    姚宜斌, 胡明贤, 许超钤.基于DREAMNET的GPS/BDS /GLONASS多系统网络RTK定位性能分析[J].测绘学报, 2016, 45(9):1 009-1 018

    Yao Yibin, Hu Mingxian, Xu Chaoqian.Positioning Accuracy Analysis of GPS/BDS/GLONASS Network RTK Based on DREAMNET[J].Acta Geodaetica et Cartographica Sinica, 2016, 45(9):1 009-1 018
    [7]
    祝会忠, 徐爱功, 高猛, 等.BDS网络RTK中距离参考站整周模糊度单历元解算方法[J].测绘学报, 2016, 45(1):50-57 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=chxb201601008

    Zhu Huizhong, Xu Aigong, Gao Meng, et al.The Algorithm of Single-Epoch Integer Ambiguity Resolution Between Middle-Range BDS Network RTK Reference Stations[J].Acta Geodaetica et Cartographica Sinica, 2016, 45(1):50-57 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=chxb201601008
    [8]
    祝会忠, 李博, 徐爱功.长距离单历元单频非差北斗网络差分方法[J].测绘科学, 2016, 41(5):14-20 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=chkx201605004

    Zhu Huizhong, Li Bo, Xu Aigong.Differential Method of Long-Range Single Epoch Single-Frequency Non-difference BeiDou Network[J].Science of Surveying and Mapping, 2016, 41(5):14-20 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=chkx201605004
    [9]
    赵硕, 秘金钟, 徐彦田.双频智能手机GNSS数据质量及定位精度分析[J].测绘科学, 2019, 44(8):1-10 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=chkx202002004

    Zhao Shuo, Bei Jinzhong, Xu Yantian.Analysis of GNSS Data Quality and Positioning Accuracy of Dual Frequency Smartphone[J].Science of Surveying and Mapping, 2019, 44(8):1-10 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=chkx202002004
    [10]
    张楷时, 焦文海, 李建文.Android智能终端GNSS定位精度分析[J].武汉大学学报·信息科学版, 2019, 44(10):1 472-1 476 http://www.cnki.com.cn/Article/CJFDTotal-WHCH201910008.htm

    Zhang Kaishi, Jiao Wenhai, Li Jianwen.Analysis of GNSS Positioning Precision on Android Smart Device [J].Geomatics and Information Science of Wuhan University, 2019, 44(10):1 472-1 476 http://www.cnki.com.cn/Article/CJFDTotal-WHCH201910008.htm
    [11]
    张楷时.安卓智能终端精密定位关键技术研究[D].郑州: 信息工程大学, 2019

    Zhang Kaishi.Research on Key Technologies for Precise Positioning of Android Smart Terminal[D].Wuhan: Information Engineering University, 2019
    [12]
    史翔.基于智能手机GNSS观测值的连续平滑定位算法[D].武汉: 武汉大学, 2019

    Shi Xiang.Continuous Smoothing Positioning Algorithm Based on GNSS Observations of Smartphones [D].Wuhan: Wuhan University, 2019
    [13]
    Weng D, Gan X, Chen W, et al.A New DGNSS Positioning Infrastructure for Android Smartphones [J].Sensors, 2020, 20(2) :1-15 https://www.mdpi.com/1424-8220/20/2/487/pdf
    [14]
    Zhang X, Tao X, Zhu F, et al.Quality Assessment of GNSS Observations from an Android N Smartphone and Positioning Performance Analysis Using Time-Differenced Filtering Approach[J].GPS Solutions, 2018, 22(3) :70-80 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=150023973d177fcad6da5ea14de41ce4
    [15]
    Realini E, Caldera S, Pertusini L, et al. Precise GNSS Positioning Using Smart Devices[J].Sensors, 2017, 17(10) :2 434-2 447 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=MDPI000000174518
    [16]
    Liu W, Shi X, Zhu F, et al.Quality Analysis of Multi-GNSS Raw Observations and a Velocity-Ai- ded Positioning Approach Based on Smartphones[J].Advances in Space Research, 2019, 63(8):2 358-2 377 http://www.sciencedirect.com/science/article/pii/S0273117719300122
    [17]
    Dabove P, Di Pietra V.Towards High Accuracy GNSS Real-Time Positioning with Smartphones[J].Advances in Space Research, 2019, 63(1):94-102 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=4e54d9fc97c53665b3f00f80af7b00c5
    [18]
    Hatch R.The Synergism of GPS Code and Carrier Measurements[C].International Geodetic Symposium on Satellite Doppler Positioning, Physical Sciences Laboratory of New Mexico State University, Las Cruces, NM, USA, 1982
    [19]
    郑南山, 李增科.多谱勒平滑伪距在GPS/INS紧耦合导航中的应用[J].武汉大学学报·信息科学版, 2014, 39(10):1 158-1 162

    Zheng Nanshan, Li Zengke.Application of Doppler Smoothing Pseudo Range in GPS/INS Tightly Coupled Navigation[J].Geomatics and Information Scien-ce of Wuhan University, 2014, 39(10):1 158-1 162
    [20]
    Teunissen P J.A Canonical Theory for Short GPS Baselines Part II:The Ambiguity Precision and Correlation[J].Journal of Geodesy, 1997, 71:320-336 doi: 10.1007%2Fs001900050107
  • Related Articles

    [1]ZHAO Binbin, XIE Jianxiang, ZHANG Hongkui, WANG Liwei, WANG Qian. Geographic Line Extraction Algorithm Based on Morphing Transformation Techniques[J]. Geomatics and Information Science of Wuhan University, 2025, 50(1): 174-183. DOI: 10.13203/j.whugis20220493
    [2]WANG Pengxin, CHEN Chi, ZHANG Yue, ZHANG Shuyu, LIU Junming. Estimation of Winter Wheat Yield Using Assimilated Bi-variables and PCA-Copula Method[J]. Geomatics and Information Science of Wuhan University, 2022, 47(8): 1201-1212. DOI: 10.13203/j.whugis20220038
    [3]XIE Yanxin, WU Xiaocheng, HU Xiong. Using One-Dimensional Variational Assimilation Algorithm to Obtain Atmospheric Refractive Index from Ground-Based GPS Phase Delay[J]. Geomatics and Information Science of Wuhan University, 2018, 43(7): 1042-1047. DOI: 10.13203/j.whugis20160238
    [4]LI Jingzhong, ZHANG Jinming. A Morphing Method for Smooth Area Features Based on Fourier Transform[J]. Geomatics and Information Science of Wuhan University, 2017, 42(8): 1104-1109. DOI: 10.13203/j.whugis20150157
    [5]OU Ming, ZHEN Weimin, XU Jisheng, YU Xiao, LIU Yiwen, LIU Dun. Regional Ionospheric TEC Reconstruction by Data Assimilation Technique[J]. Geomatics and Information Science of Wuhan University, 2017, 42(8): 1075-1081. DOI: 10.13203/j.whugis20150297
    [6]WANG Hongwei, HUANG Chunlin, HOU Jinliang, LI Xiaoying. Estimation of Snow Depth from Multi-source Data Fusion Based on Data Assimilation Algorithm[J]. Geomatics and Information Science of Wuhan University, 2016, 41(6): 848-852. DOI: 10.13203/j.whugis20140568
    [7]SONG Fucheng, SHI Shuangshuang, FENG Jiandi. Construction of Ionospheric TEC Assimilation Model Based on Chapman Function[J]. Geomatics and Information Science of Wuhan University, 2016, 41(6): 784-790. DOI: 10.13203/j.whugis20150101
    [8]ZHANG Xianfeng, ZHAO Jiepeng. System for Soil Moisture Retrieval and Data Assimilation from Remotely Sensed Data in Arid Regions[J]. Geomatics and Information Science of Wuhan University, 2012, 37(7): 794-799.
    [9]WU Mingguang, LUE Guonian, CHEN Taisheng. Data Structure Assimilation of Marker Symbol[J]. Geomatics and Information Science of Wuhan University, 2011, 36(2): 239-243.
    [10]CHEN Rongyuan, LIU Guoying, WANG Leiguang, QIN Qianqing. Fusion Algorithm of Multispectral and Panchromatic Images Based on the Data Assimilation[J]. Geomatics and Information Science of Wuhan University, 2009, 34(8): 919-923.
  • Cited by

    Periodical cited type(13)

    1. 杨忠荣. 低成本车载RTK高精度定位方法. 地理空间信息. 2025(03): 96-100 .
    2. 程建华,陈思成,臧楠,程思翔,赵国晶,马子凡. 附加自适应短时高程变化率约束的PPP/INS紧组合增强模型. 测绘学报. 2024(09): 1761-1776 .
    3. 王勋,崔先强,高天杭. 动力学模型自适应滤波算法研究. 武汉大学学报(信息科学版). 2023(05): 741-748 .
    4. 张一,尹潇,宋海娜. 运动方向约束的自适应SRUKF目标跟踪算法. 导航定位学报. 2023(05): 53-59 .
    5. 李清泉,吕世望,陈智鹏,殷煜,张德津. 冬奥会国家速滑馆超大地坪平整度快速测量. 武汉大学学报(信息科学版). 2022(03): 325-333 .
    6. 辜声峰,戴春齐,何成鹏,方礼喆,王梓豪. 面向城市车载导航的多系统PPP-RTK/VIO半紧组合算法性能分析. 武汉大学学报(信息科学版). 2021(12): 1852-1861 .
    7. 陶晓晓,卢小平,路泽忠,周雨石,余振宝. WiFi融合环境光定位方法研究. 测绘科学. 2020(06): 57-61+72 .
    8. 张辰东,王兆瑞. 一种长隧道内高速列车实时高精度定位方法. 计算机仿真. 2020(09): 124-128+188 .
    9. 尹潇,柴洪洲,向民志,杜祯强. 附加运动学约束的BDS抗差UKF导航算法. 测绘学报. 2020(11): 1399-1406 .
    10. 王诒国,潘孝星. 基于马氏距离的抗差卡尔曼滤波算法在组合导航中的应用. 北京测绘. 2020(12): 1810-1814 .
    11. 吕大千,曾芳玲,欧阳晓凤,于合理. 时频传递的改进整数相位钟方法. 测绘学报. 2019(07): 889-897 .
    12. 邓中亮,尹露,唐诗浩,刘延旭,宋汶轩. 室内定位关键技术综述. 导航定位与授时. 2018(03): 14-23 .
    13. 张迪,施昆,李照永. 移动测量系统的GNSS/INS组合定位方法的对比研究. 软件. 2018(08): 110-116 .

    Other cited types(18)

Catalog

    Article views (1157) PDF downloads (111) Cited by(31)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return