LIU Jiping, LIU Mengmeng, XU Shenghua, DU Qingyun, ZHU Jun, ZHU Xiuli. A Survey on Integrated and Comprehensive Disaster Reduction Technology in the Era of Big Dat[J]. Geomatics and Information Science of Wuhan University, 2020, 45(8): 1107-1116. DOI: 10.13203/j.whugis20200108
Citation: LIU Jiping, LIU Mengmeng, XU Shenghua, DU Qingyun, ZHU Jun, ZHU Xiuli. A Survey on Integrated and Comprehensive Disaster Reduction Technology in the Era of Big Dat[J]. Geomatics and Information Science of Wuhan University, 2020, 45(8): 1107-1116. DOI: 10.13203/j.whugis20200108

A Survey on Integrated and Comprehensive Disaster Reduction Technology in the Era of Big Dat

Funds: 

The National Key Research and Development Program of China 2016YFC0803101

The National Key Research and Development Program of China 2016YFC0803108

the Basic Research Fund of CASM 7771701

More Information
  • Author Bio:

    LIU Jiping, PhD, professor, specializes in geospatial big data for government affairs, geographic information system services for government affairs, and emergency geographic information services.liujip@casm.ac.cn

  • Corresponding author:

    LIU Mengmeng, PhD candidate.liuflame123@gmail.com

  • Received Date: March 11, 2020
  • Published Date: August 04, 2020
  •   Objectives   China is one of the countries with the most severe natural disasters in the world. There are many types of natural disasters and high frequency of disasters. It often causes huge economic losses and casualties in the disaster area. Combining the key technologies of the internet of things(IOT), the Internet, and geographic information for surveying and mapping, so it is possible to grasp the disaster situation in a timely and efficient manner. Thereby we could scientifically and effectively formulate disaster prevention and mitigation strategies, and implement emergency rescue measures, which are of great significance to the safety of people’s lives and property.
      Methods   The development of big data and disaster reduction technologies has brought new possibilities for disaster management and emergency response. Geographic information big data provides basic support for emergency rapid response, location and navigation big data provides location information of personnel and materials for emergency rescue. Two- and three-dimensional visualization technology more realistically restores the disaster environment, and disaster models scientifically simulate the process of disaster occurrence, internet public opinion big data in disaster assessment also plays an important role. Big data is profoundly changing emergency rescue and disaster management with its ability to visualize, analyze and predict disasters. The combination of disaster big data and surveying and mapping geographic information technology has become an important means to improve disaster prevention and mitigation capabilities.
      Results   We analyze and summary the integrated and comprehensive disaster reduction technology in the context of big data. The characteristics of integrated and comprehensive disaster reduction technology are elaborated, including comprehensive and thorough perception, broadband ubiquitous interconnection, precise and fast integration, ubiquitous positioning, efficient and intelligent processing, and intelligent collaborative services. The progress of integrated comprehensive disaster reduction technology is reviewed, which includes indoor and outdoor high-precision integrated positioning, rapid integration of multi-source data, scene fusion and enhanced visualization, typical disaster model construction and management, integrated disaster reduction comprehensive services, and China’s disaster reduction service system platform. In addition, we introduced the integrated comprehensive disaster reduction intelligent service system platform, APP and its application services, and summarized and prospected the integrated comprehensive disaster reduction technology and services.
      Conclusions   The continuous development of big data technology provides new ideas and methods for people to analyze and solve emergency response problems, and provides a very convenient way for the sharing, integration, analysis, mining, and decision-making of comprehensive disaster reduction services. However, with the in-depth application of new concepts, new technologies, and new methods such as "Internet +", IoT, cloud computing, artificial intelligence, and mobile communications in the field of comprehensive disaster reduction, the means of acquisition, transmission efficiency, application deployment methods, and services of comprehensive disaster reduction data Modes, data production and processing methods, target users, etc. have undergone profound changes. This leads to the characteristics of crowd sourced disaster data acquisition, diversified data storage models, and comprehensive analysis services, which brings new opportunities and challenges to the development of integrated disaster reduction services.
  • [1]
    范维澄, 闪淳昌.公共安全与应急管理[M].北京:科学出版社, 2017

    Fan Weicheng, Shan Chunchang. Public Safety and Emergency Management[M].Beijing: Science Press, 2017
    [2]
    朱庆, 曹振宇, 林珲, 等.应急测绘保障体系若干关键问题研究[J].武汉大学学报·信息科学版, 2014, 39(5): 551-555 doi: 10.13203/j.whugis20130351

    Zhu Qing, Cao Zhenyu, Lin Hui, et al. Key Technologies of Emergency Surveying and Mapping Service System[J]. Geomatics and Information Science of Wuhan University, 2014, 39(5):551-555 doi: 10.13203/j.whugis20130351
    [3]
    刘纪平, 张福浩, 徐胜华.政务地理空间大数据研究进展综述[J].测绘学报, 2017, 46(10): 480-489 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=chxb201710048

    Liu Jiping, Zhang Fuhao, Xu Shenghua. Progresses and Prospects in Geospatial Big Data for E-government[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10): 480-489 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=chxb201710048
    [4]
    Watson H, Finn R L, Wadhwa K. Organizational and Societal Impacts of Big Data in Crisis Management[J].Journal of Contingencies and Crisis Management, 2017, 25(1): 15-22 doi: 10.1111/1468-5973.12141
    [5]
    Mulder F, Ferguson J, Groenewegen P, et al. Questioning Big Data: Crowdsourcing Crisis Data Towards an Inclusive Humanitarian Response[J]. Big Data and Society, 2016, 3(2): 253-254 http://www.researchgate.net/publication/306051253_Questioning_Big_Data_Crowdsourcing_crisis_data_towards_an_inclusive_humanitarian_response
    [6]
    Akter S, Wamba S F.Big Data and Disaster Management: A Systematic Review and Agenda for Future Research[J]. Annals of Operations Research, 2019, 283(2): 939-959 https://ideas.repec.org/a/spr/annopr/v283y2019i1d10.1007_s10479-017-2584-2.html
    [7]
    Makki A, Siddig A, Saad M. Survey of WiFi Positioning Using Time-Based Techniques[J].Computer Networks, 2015, 88(12): 218-233 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=5bab40afedf22a7aab58d2d0e55dc551
    [8]
    Tian D, Liu C, Duan X, et al. A Distributed Position-Based Protocol for Emergency Messages Broadcasting in Vehicular ad Hoc Networks[J]. IEEE Internet of Things Journal, 2018, 5(2): 1 218-1 227 doi: 10.1109/JIOT.2018.2791627
    [9]
    He D, Ma M, Zhang Y, et al. A Strong User Authentication Scheme with Smart Cards for Wireless Communications[J]. Computer Communications, 2010, 34(3): 367-374 http://dl.acm.org/citation.cfm?id=1931206
    [10]
    Harle R. A Survey of Indoor Inertial Positioning Systems for Pedestrians[J]. IEEE Communications Surveys and Tutorials, 2013, 15(3): 1 281-1 293 doi: 10.1109/SURV.2012.121912.00075
    [11]
    Lee S, Ha K N, Lee K C. A Pyroelectric Infrared Sensor-Based Indoor Location-Aware System for the Smart Home[J]. IEEE Transactions on Consumer Electronics, 2006, 52(4): 1 311-1 317 doi: 10.1109/TCE.2006.273150
    [12]
    Feldmann S, Kyamakya K, Zapater A, et al. An Indoor Bluetooth-Based Positioning System: Concept, Implementation and Experimental Evaluation[C]. International Conference on Wireless Networks, Las Vegas, Nevada, USA, 2003
    [13]
    Lim C H, Wan Y, Ng B P, et al. A Real-Time Indoor WiFi Localization System Utilizing Smart Antennas[J]. IEEE Transactions on Consumer Electronics, 2007, 53(2): 618-622 doi: 10.1109/TCE.2007.381737
    [14]
    Huang C H, Lee L, Ho C C, et al. Real-Time RFID Indoor Positioning System Based on Kalman-Filter Drift Removal and Heron-Bilateration Location Estimation[J]. IEEE Transactions on Instrumentation and Measurement, 2014, 64(3): 728-739 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=f61fe1006178a023b93e3ae5244344f6
    [15]
    Brunato M, Battiti R. Statistical Learning Theory for Location Fingerprinting in Wireless LANs[J]. Computer Networks, 2004, 47(6): 825-845 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=82688bebe0b2de843b6868f5ee01dfff
    [16]
    Wu C S, Yang Z, Liu Y H, et al. WILL: Wireless Indoor Localization Without Site Survey[J]. IEEE Transactions on Parallel and Distributed Systems, 2012, 24(4): 839-848 http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.640.8245
    [17]
    Lee J, Ryu J, Lee S. Improved Modeling of IEEE 802.11a PHY Through Fine-Grained Measurements[J]. Computer Networks, 2009, 54(4): 641-657 http://core.ac.uk/display/21415726
    [18]
    Stoyanova T, Kerasiotis F, Prayati A, et al. A Practical RF Propagation Model for Wireless Network Sensors[C].The Third International Conference on Sensor Technologies and Applications, Glyfada, Greece, 2009
    [19]
    Yang M. Hybrid Ray-Tracing Model for Radio Wave Propagation Through Periodic Building Structures[J]. Microwaves Antennas and Propagation IET, 2011, 5(3): 340-348 doi: 10.1049/iet-map.2010.0153
    [20]
    Madigan D, Einahrawy E, Martin R P, et al. Bayesian Indoor Positioning Systems[C]. The 24th Annual Joint Conference of the IEEE Computer and Communications Societies, Miami, FL, USA, 2005
    [21]
    Morelli C, Nicoli M, Rampa V, et al. Hidden Markov Models for Radio Localization in Mixed LOS/NLOS Conditions[J]. IEEE Transactions on Signal Processing, 2007, 55(4): 1 525-1 542 https://www.researchgate.net/profile/Umberto_Spagnolini/publication/3320104_Hidden_Markov_models_for_radio_localization_in_mixed_LOSNLOS_conditions/links/00b4952f4c5df978ab000000.pdf?inViewer=true&pdfJsDownload=true&disableCoverPage=true&origin=publication_detail
    [22]
    陈伟.基于GPS和自包含传感器的行人室内外无缝定位算法研究[D].合肥: 中国科学技术大学, 2010

    Chen Wei. Research on GPS/Self-Contained Sensors Based Seamless Outdoor/Indoor Pedestrian Positioning Algorithm[D].Hefei: University of Science and Technology of China, 2010
    [23]
    Yu L, Liu Y, Chi T, et al. An iBeacon-Based Indoor and Outdoor Positioning System for the Fire Emergency Command[C]. Forum on Cooperative Positioning and Service, Harbin, China, 2017
    [24]
    Wan J, Xu C, Zhang X, et al. Toward Emergency Rescue: A Template-Matching-Based Orientation Algorithm Using Human Occlusion Error Model [J]. Physical Communication, 2020, 38: 100-110 http://www.sciencedirect.com/science/article/pii/S1874490720301890
    [25]
    Chen G, Li S. Research on Location Fusion of Spatial Geological Disaster Based on Fuzzy SVM[J]. Computer Communications, 2020, 153: 538-544 doi: 10.1016/j.comcom.2020.02.033
    [26]
    Adege A B, Lin H P, Tarekegn G B, et al. An Indoor and Outdoor Positioning Using a Hybrid of Support Vector Machine and Deep Neural Network Algorithms[J]. Journal of Sensors, 2018, 58(4):128-136 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=8ddff45b76a6f903123e6bccad3e604f
    [27]
    Mendelson E. System and Method Utilizing Integral Wireless Protocols of a Mobile Phone as an Emergency Beacon to Aid First Responders in Locating People: U.S. Patent 9 374 673[P]. 2016-06-21
    [28]
    Zhang L L, Liu X, Li Y P, et al. Emergency Medical Rescue Efforts After a Major Earthquake: Lessons from the 2008 Wenchuan Earthquake[J]. The Lancet, 2012, 379(9 818): 853-861 doi: 10.1016/S0140-6736(11)61876-X
    [29]
    Hristidis V, Chen S C, Li Tao. Survey of Data Management and Analysis in Disaster Situations[J]. The Journal of Systems and Software, 2010, 83(10): 1 701-1 714 doi: 10.1016/j.jss.2010.04.065
    [30]
    Goswami S, Chakraborty S, Ghosh S, et al. A Review on Application of Data Mining Techniques to Combat Natural Disasters [J]. Ain Shams Engineering Journal, 2018, 9(3): 365-378 doi: 10.1016/j.asej.2016.01.012
    [31]
    王恩雁.基于本体的多源异构应急信息融合方法研究[D].哈尔滨: 哈尔滨工业大学, 2014

    Wang Enya. Multisource Heterogeneity Information Fusion Methods Based on Ontology Model[D]. Harbin: Harbin Institute of Technology, 2014
    [32]
    Lenjani A, Dyke S J, Bilionis I, et al. Towards Fully Automated Post-Event Data Collection and Analysis: Preevent and Post-Event Information Fusion[J].Engineering Structures, 2020, 120(4): 120-129 http://www.researchgate.net/publication/339244785_Towards_fully_automated_post-event_data_collection_and_analysis_Pre-event_and_post-event_information_fusion
    [33]
    Lee J. A Spatial Access-Oriented Implementation of a 3D GIS Topological Data Model for Urban Entities[J]. Kluwer Academic Publishers, 2004, 8(3): 237-264 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=b05f16fac67243cd9f1daf603909d308
    [34]
    Gamberini L, Cottone P, Spagnolli A. Responding to a Fire Emergency in a Virtual Environment: Different Patterns of Action for Different Situations[J]. Ergonomics, 2003, 46(8): 842-858 doi: 10.1080/0014013031000111266
    [35]
    Yuan W, Schneider M. iNav: An Indoor Navigation Model Supporting Length-Dependent Optimal Routing[M]//Schneider M. Geospatial Thinking. Berlin, Heidelberg: Springer, 2010
    [36]
    Li Lei, Zhang M J, Xu F J. ERT-VR: An Immersive Virtual Reality System for Emergency Rescue Training[J].Virtual Reality, 2005, 8(3): 194-197 doi: 10.1007/s10055-004-0149-6
    [37]
    Kubíček P, Ludík T, Mulíčková E, et al. Process Support and Adaptive Geovisualisation in Emergency Management[M]// Ludík T. Geographic Information and Cartography for Risk and Crisis Management. Berlin, Heidelberg: Springer, 2010
    [38]
    朱强, 陈秀万, 彭俊.基于网格的洪水损失计算模型[J].武汉大学学报(工学版), 2007, 40(6): 42-46 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=whsldldxxb200706009

    Zhu Qiang, Chen Xiuwan, Peng Jun. A Mathematical Model for Flood Loss Estimation Based on Grid[J]. Wuhan University Journal (Engineering Edition), 2007, 40(6): 42-46 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=whsldldxxb200706009
    [39]
    Mcdougall S, Hungr O.A Model for the Analysis of Rapid Landslide Motion Across Three-Dimensional Terrain[J]. Canadian Geotechnical Journal, 2004, 41 (6): 1 084-1 097 doi: 10.1139/t04-052
    [40]
    Das S, Aki K. Fault Plane with Barriers: A Versatile Earthquake Model[J]. Journal of Geophysical Research, 1977, 82(36): 5 658-5 670 doi: 10.1029/JB082i036p05658
    [41]
    Conte J, Peng B. Fully Nonstationary Analytical Earthquake Ground-Motion Model[J]. Journal of Engineering Mechanics, 1997, 123(1): 15-24 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=03f7dbb36b2165c32e79679f6fe63033
    [42]
    Liu H X, Ban J X, Ma W, et al. Model Reference Adaptive Control Framework for Real-Time Traffic Management Under Emergency Evacuation[J]. Journal of Urban Planning and Development, 2007, 133(1): 43-50 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=410f5fcb6f4afb28bd1ab5d2320dba2a
    [43]
    Kwon E, Pitt S. Evaluation of Emergency Evacuation Strategies for Downtown Event Traffic Using a Dynamic Network Model[J]. Transportation Research Record, 2005, 1 922(1): 149-155 doi: 10.1177/0361198105192200119
    [44]
    Drossel B, Schwabl F.Self-organized Critical Forest- Fire Model[J]. Physical Review Letters, 1992, 69(11): 1 629-1 636 doi: 10.1103/PhysRevLett.69.1629
    [45]
    Asghar S, Alahakoon D, Churilov L. A Dynamic Integrated Model for Disaster Management Decision Support Systems[J]. International Journal of Simulation Systems Science and Technology, 2005, 6(10/11): 95-114 https://scholars.latrobe.edu.au/display/publication101087
    [46]
    Othman S H, Beydoun G. Model-Driven Disaster Management[J]. Information and Management, 2013, 50(5): 218-228 doi: 10.1016/j.im.2013.04.002
    [47]
    Zhu X, Li X, Wang S, et al. Scenarios Conversion Deduction Method of Natural Disaster Based on Dynamic Bayesian Networks[J].DEStech Transactions on Computer Science and Engineering, 2017, 50(5): 68-78 http://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=IPFD&filename=LRCM201710001045
    [48]
    Shan S, Zhao F, Wei Y, et al. Disaster Management 2.0: A Real-Time Disaster Damage Assessment Model Based on Mobile Social Media Data:A Case Study of Weibo(Chinese Twitter)[J].Safety Science, 2019, 115(2): 393-413 https://www.sciencedirect.com/science/article/pii/S0925753518302790
    [49]
    Suna D, Zhao S, Zhang Z, et al. A Match Method Based on Latent Semantic Analysis for Earthquake Hazard Emergency Plan[J]. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2017, 42(2): 68-78 https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLII-2-W7/137/2017/isprs-archives-XLII-2-W7-137-2017.pdf
    [50]
    Yi W, Özdamar L. A Dynamic Logistics Coordination Model for Evacuation and Support in Disaster Response Activities[J]. European Journal of Operational Research, 2007, 179(3): 1 177-1 193 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c828cd4e113998958800665480b23679
    [51]
    Zhou H, Wong M O, Ying H, et al. A Framework of a Multi-user Voice-Driven BIM-Based Navigation System for Fire Emergency Response[C].The 26th International Workshop on Intelligent Computing in Engineering, Leuven, Belgium, 2019
    [52]
    刘纪平, 张用川, 徐胜华, 等.一体化综合减灾智能服务顶层设计研究[J].武汉大学学报·信息科学版, 2018, 43(12): 497-505 doi: 10.13203/j.whugis20180309

    Liu Jiping, Zhang Yongchuan, Xu Shenghua, et al. Top-Level Design Study for the Integrated Disaster Reduction Intelligent Service[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12): 497-505 doi: 10.13203/j.whugis20180309
    [53]
    徐胜华, 刘纪平, 刘猛猛, 等.一体化综合减灾智能服务系统研究[J].测绘科学, 2019, 44(6):273-278 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=chkx201906040

    Xu Shenghua, Liu Jiping, Liu Mengmeng, et al. Research on the Integrated Comprehensive Disaster Reduction Intelligent Service System[J]. Geomatics and Information Science of Wuhan University, 2019, 44(6): 273-278 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=chkx201906040
  • Related Articles

    [1]ZHAO Binbin, XIE Jianxiang, ZHANG Hongkui, WANG Liwei, WANG Qian. Geographic Line Extraction Algorithm Based on Morphing Transformation Techniques[J]. Geomatics and Information Science of Wuhan University, 2025, 50(1): 174-183. DOI: 10.13203/j.whugis20220493
    [2]WANG Pengxin, CHEN Chi, ZHANG Yue, ZHANG Shuyu, LIU Junming. Estimation of Winter Wheat Yield Using Assimilated Bi-variables and PCA-Copula Method[J]. Geomatics and Information Science of Wuhan University, 2022, 47(8): 1201-1212. DOI: 10.13203/j.whugis20220038
    [3]XIE Yanxin, WU Xiaocheng, HU Xiong. Using One-Dimensional Variational Assimilation Algorithm to Obtain Atmospheric Refractive Index from Ground-Based GPS Phase Delay[J]. Geomatics and Information Science of Wuhan University, 2018, 43(7): 1042-1047. DOI: 10.13203/j.whugis20160238
    [4]LI Jingzhong, ZHANG Jinming. A Morphing Method for Smooth Area Features Based on Fourier Transform[J]. Geomatics and Information Science of Wuhan University, 2017, 42(8): 1104-1109. DOI: 10.13203/j.whugis20150157
    [5]OU Ming, ZHEN Weimin, XU Jisheng, YU Xiao, LIU Yiwen, LIU Dun. Regional Ionospheric TEC Reconstruction by Data Assimilation Technique[J]. Geomatics and Information Science of Wuhan University, 2017, 42(8): 1075-1081. DOI: 10.13203/j.whugis20150297
    [6]WANG Hongwei, HUANG Chunlin, HOU Jinliang, LI Xiaoying. Estimation of Snow Depth from Multi-source Data Fusion Based on Data Assimilation Algorithm[J]. Geomatics and Information Science of Wuhan University, 2016, 41(6): 848-852. DOI: 10.13203/j.whugis20140568
    [7]SONG Fucheng, SHI Shuangshuang, FENG Jiandi. Construction of Ionospheric TEC Assimilation Model Based on Chapman Function[J]. Geomatics and Information Science of Wuhan University, 2016, 41(6): 784-790. DOI: 10.13203/j.whugis20150101
    [8]ZHANG Xianfeng, ZHAO Jiepeng. System for Soil Moisture Retrieval and Data Assimilation from Remotely Sensed Data in Arid Regions[J]. Geomatics and Information Science of Wuhan University, 2012, 37(7): 794-799.
    [9]WU Mingguang, LUE Guonian, CHEN Taisheng. Data Structure Assimilation of Marker Symbol[J]. Geomatics and Information Science of Wuhan University, 2011, 36(2): 239-243.
    [10]CHEN Rongyuan, LIU Guoying, WANG Leiguang, QIN Qianqing. Fusion Algorithm of Multispectral and Panchromatic Images Based on the Data Assimilation[J]. Geomatics and Information Science of Wuhan University, 2009, 34(8): 919-923.
  • Cited by

    Periodical cited type(13)

    1. 杨忠荣. 低成本车载RTK高精度定位方法. 地理空间信息. 2025(03): 96-100 .
    2. 程建华,陈思成,臧楠,程思翔,赵国晶,马子凡. 附加自适应短时高程变化率约束的PPP/INS紧组合增强模型. 测绘学报. 2024(09): 1761-1776 .
    3. 王勋,崔先强,高天杭. 动力学模型自适应滤波算法研究. 武汉大学学报(信息科学版). 2023(05): 741-748 .
    4. 张一,尹潇,宋海娜. 运动方向约束的自适应SRUKF目标跟踪算法. 导航定位学报. 2023(05): 53-59 .
    5. 李清泉,吕世望,陈智鹏,殷煜,张德津. 冬奥会国家速滑馆超大地坪平整度快速测量. 武汉大学学报(信息科学版). 2022(03): 325-333 .
    6. 辜声峰,戴春齐,何成鹏,方礼喆,王梓豪. 面向城市车载导航的多系统PPP-RTK/VIO半紧组合算法性能分析. 武汉大学学报(信息科学版). 2021(12): 1852-1861 .
    7. 陶晓晓,卢小平,路泽忠,周雨石,余振宝. WiFi融合环境光定位方法研究. 测绘科学. 2020(06): 57-61+72 .
    8. 张辰东,王兆瑞. 一种长隧道内高速列车实时高精度定位方法. 计算机仿真. 2020(09): 124-128+188 .
    9. 尹潇,柴洪洲,向民志,杜祯强. 附加运动学约束的BDS抗差UKF导航算法. 测绘学报. 2020(11): 1399-1406 .
    10. 王诒国,潘孝星. 基于马氏距离的抗差卡尔曼滤波算法在组合导航中的应用. 北京测绘. 2020(12): 1810-1814 .
    11. 吕大千,曾芳玲,欧阳晓凤,于合理. 时频传递的改进整数相位钟方法. 测绘学报. 2019(07): 889-897 .
    12. 邓中亮,尹露,唐诗浩,刘延旭,宋汶轩. 室内定位关键技术综述. 导航定位与授时. 2018(03): 14-23 .
    13. 张迪,施昆,李照永. 移动测量系统的GNSS/INS组合定位方法的对比研究. 软件. 2018(08): 110-116 .

    Other cited types(18)

Catalog

    Article views PDF downloads Cited by(31)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return