Citation: | LI Fan, XIA Jizhe, HUANG Zhao, LI Xiaoming, LI Qingquan. Predicting Personal Next Location Based on Stay Point Feature Extraction[J]. Geomatics and Information Science of Wuhan University, 2020, 45(12): 1970-1980. DOI: 10.13203/j.whugis20200068 |
[1] |
Cécile B, Lathia N, Picot-Clemente R, et al. Location Recommendation with Social Media Data[M]// Social Information Access. Cham: Springer, 2018.
|
[2] |
Xia Jizhe, Curtin K M, Huang Jiajun, et al. A Carpool Matching Model with Both Social and Route Networks[J]. Computers, Environment and Urban Systems, 2019, 75(5): 90-102
|
[3] |
Lian Defu, Zhu Yin, Xie Xing, et al. Analyzing Location Predictability on Location-Based Social Networks[C].The Pacific-Asia Conference in Knowledge Discovery and Data Mining, Singapore, 2014
|
[4] |
Song Chaoming, Qu Zuhui, Blumm N, et al. Limits of Predictability in Human Mobility[J]. Science, 2010, 327(5 968): 1 018-1 021
|
[5] |
Xia Jizhe, Yang Chaowei, Li Qingquan. Using Spatiotemporal Patterns to Optimize Earth Observation Big Data Access: Novel Approaches of Indexing, Service Modeling and Cloud Computing[J]. Computers, Environment, and Urban Systems, 2018, 72(5): 191-203
|
[6] |
Zheng Xin, Han Jialong, Sun Aixin. A Survey of Location Prediction on Twitter[J]. IEEE Transactions on Knowledge and Data Engineering, 2018, 30(9): 1 652-1 671 doi: 10.1109/TKDE.2018.2807840
|
[7] |
Zhang Junbo, Zheng Yu, Qi Dekang, et al.Predicting Citywide Crowd Flows Using Deep Spatio-Temporal Residual Networks [J]. Artificial Intelligence, 2017, 259(9): 182-194
|
[8] |
Jia Tao, Yan Penggao. Predicting Citywide Road Traffic Flow Using Deep Spatiotemporal Neural Networks[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 12(12): 1-11
|
[9] |
詹平, 郭菁, 郭薇.基于时空索引结构的移动对象将来时刻位置预测[J].武汉大学学报(工学版), 2007, 40(3): 103-108
Zhan Ping, Guo Jing, Guo Wei. Query Processing About Near Future Positions of Moving Objects Based on Spatio-Temporal Index Structure[J]. Engineering Journal of Wuhan University, 2007, 40(3): 103-108
|
[10] |
柯宏发, 何可, 陈永光.运动目标的MGM(1, N)轨迹预测算法[J].武汉大学学报·信息科学版, 2012, 37(6): 35-39 http://ch.whu.edu.cn/article/id/229
Ke Hongfa, He Ke, Chen Yongguang. Trajectory Prediction Algorithm of Moving Object Based on MGM(1, N)[J].Geomatics and Information Science of Wuhan University, 2012, 37(6): 35-39 http://ch.whu.edu.cn/article/id/229
|
[11] |
邓敏, 陈倜, 杨文涛.融合空间尺度特征的时空序列预测建模方法[J].武汉大学学报·信息科学版, 2015, 40(12): 1 625-1 632 doi: 10.13203/j.whugis20130842
Deng Min, Chen Ti, Yang Wentao. A New Method of Modeling Spatio-temporal Sequence by Considering Spatial Scale Characteristics[J]. Geomatics and Information Science of Wuhan University, 2015, 40(12): 1 625-1 632 doi: 10.13203/j.whugis20130842
|
[12] |
Keles I, Ozer M, Toroslu I H, et al. Location Prediction of Mobile Phone Users Using Apriori-Based Sequence Mining with Multiple Support[C]. International Workshop on New Frontiers in Mining Complex Patterns, Wurzbury, Germany, 2015
|
[13] |
Chen Pengfei, Shi Wenzhong, Zhou Xiaolin, et al. STLP-GSM: A Method to Predict Future Locations of Individuals Based on Geotagged Social Media Data[J]. International Journal of Geographical Information Systems, 2019, 33(12): 2 337-2 362 doi: 10.1080/13658816.2019.1630630
|
[14] |
段炼, 胡涛, 朱欣焰, 等.顾及时空语义的疑犯位置时空预测[J].武汉大学学报·信息科学版, 2019, 44(5): 765-770 doi: 10.13203/j.whugis20170238
Duan Lian, Hu Tao, Zhu Xinyan, et al. Spatio-Temporal Prediction of Suspect Location by Spatio-Temporal Semantics[J]. Geomatics and Information Science of Wuhan University, 2019, 44(5): 765-770 doi: 10.13203/j.whugis20170238
|
[15] |
Du Yongping, Wang Chencheng, Qiao Yanlei, et al. A Geographical Location Prediction Method Based on Continuous Time Series Markov Model[J]. PloS One, 2018, 13(11): 152-171 http://www.ncbi.nlm.nih.gov/pubmed/30452446
|
[16] |
Li Fan, Li Qingquan, Li Zhen, et al. A Personal Location Prediction Method Based on Individual Trajectory and Group Trajectory[J]. IEEE Access, 2019, 7(7): 92 850-92 860
|
[17] |
Li Fan, Li Qingquan, Li Zhen, et al. A Personal Location Prediction Method to Solve the Problem of Sparse Trajectory Data[C]. The 20th IEEE International Conference on Mobile Data Management (MDM), Hong Kong, China, 2019
|
[18] |
Alahi A, Goel K, Ramanathan V, et al. Social LSTM: Human Trajectory Prediction in Crowded Spaces[C]. The 2016 IEEE Conference on Computer Vision and Pattern Recognition, New York, USA, 2016
|
[19] |
Wu Fan, Fu Kun, Wang Yang, et al. A Spatial-Temporal-Semantic Neural Network Algorithm for Location Prediction on Moving Objects[J]. Algorithms, 2017, 10(2): 37-40 doi: 10.3390/a10020037
|
[20] |
Wong M H, Tseng V S, Tseng J C C, et al. Long-Term User Location Prediction Using Deep Learning and Periodic Pattern Mining[C]. International Conference on Advanced Data Mining and Applications, Singapore, 2017
|
[21] |
李明晓, 张恒才, 仇培元, 等.一种基于模糊长短期神经网络的移动对象轨迹预测算法[J].测绘学报, 2018, 47(12): 102-111
Li Mingxiao, Zhang Hengcai, Qiu Peiyuan, et al. Predicting Future Locations with Deep Fuzzy-LSTM Network[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(12): 102-111
|
[22] |
Ying J J, Lee W, Tseng V S. Mining Geographic-Temporal-Semantic Patterns in Trajectories for Location Prediction[J]. ACM Transactions on Intelligent Systems and Technology, 2013, 5(1): 1-33
|
[23] |
王津铭.基于变阶Markov和LSTM的位置预测技术研究[D].北京: 北京邮电大学, 2018
Wang Jinming. Research on Semantic Location Prediction Technology Using Variable Order Markov and LSTM[D]. Beijing: Beijing University of Posts and Telecommunications, 2018
|
[24] |
Jain A, Zamir A R, Savarese S, et al. Structural-RNN: Deep Learning on Spatio-Temporal Graphs[C]. Computer Vision and Pattern Recognition, New York, USA, 2016
|
[25] |
Greff K, Srivastava R K, Koutník J, et al. LSTM: A Search Space Odyssey[J]. IEEE Transactions on Neural Networks and Learning Systems, 2015, 28(10): 2 222-2 232
|
[26] |
Xu K, Ba J, Kiros R, et al. Show, Attend and Tell: Neural Image Caption Generation with Visual Attention[C]. The International Conference on Machine Learning, Toronto, USA, 2015
|
[27] |
Zheng Yu, Zhang Lizhu, Xie Xing, et al. Mining Interesting Locations and Travel Sequences from GPS Trajectories[C]. The International Conference on World Wide Web, Madrid, Spain, 2009
|
[28] |
Li Quannan, Zheng Yu, Xie Xing, et al.Mining User Similarity Based on Location History[C]. The International Conference on Advances in Geographic Information Systems, New York, USA, 2008
|
[29] |
Yue Yang, Zheng Yu, Chen Yukun, et al. Mining Individual Life Pattern Based on Location History[C]. The International Conference on Mobile Data Management, Taipei, China, 2009
|
[30] |
Ester M, Kriegel H, Sander J, et al. A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise[C].The International Conference on Knowledge Discovery and Data Mining, Portland, Oregon, USA, 1996
|
[31] |
Macqueen J B. Some Methods for Classification and Analysis of Multivariate Observations[C]. Berkeley Symposium on Mathematical Statistics and Probability, Berkeley, 1965
|
[1] | ZHU Shaolin, YUE Dongjie, HE Lina, CHEN Jian, LIU Shengnan. BDS-2/BDS-3 Joint Triple-Frequency Precise Point Positioning Models and Bias Characteristic Analysis[J]. Geomatics and Information Science of Wuhan University, 2023, 48(12): 2049-2059. DOI: 10.13203/j.whugis20210273 |
[2] | GENG Jianghui, YAN Zhe, WEN Qiang. Multi-GNSS Satellite Clock and Bias Product Combination: The Third IGS Reprocessing Campaign[J]. Geomatics and Information Science of Wuhan University, 2023, 48(7): 1070-1081. DOI: 10.13203/j.whugis20230071 |
[3] | LIU Mingliang, AN Jiachun, WANG Zemin, ZHANG Baojun, SONG Xiangyu. Performance Analysis of BDS-3 Multi-frequency Pseudorange Positioning[J]. Geomatics and Information Science of Wuhan University, 2023, 48(6): 902-910. DOI: 10.13203/j.whugis20200714 |
[4] | YUAN Haijun, ZHANG Zhetao, HE Xiufeng, XU Tianyang, XU Xueyong. Stability Analysis of BDS-3 Satellite Differential Code Bias and Its Impacts on Single Point Positioning[J]. Geomatics and Information Science of Wuhan University, 2023, 48(3): 425-432. DOI: 10.13203/j.whugis20200517 |
[5] | ZHOU Ren-yu, HU Zhi-gang, CAI Hong-liang, ZHAO Zhen, RAO Yong-nan, CHEN Liang, ZHAO Qi-le. Analysis of Pseudorange and Carrier Ranging Deviation of BDS-3 Using Parabolic Directional Antenna[J]. Geomatics and Information Science of Wuhan University, 2021, 46(9): 1298-1308. DOI: 10.13203/j.whugis20200182 |
[6] | ZHANG Hui, HAO Jinming, LIU Weiping, ZHOU Rui, TIAN Yingguo. GPS/BDS Precise Point Positioning Model with Receiver DCB Parameters for Raw Observations[J]. Geomatics and Information Science of Wuhan University, 2019, 44(4): 495-500, 592. DOI: 10.13203/j.whugis20170119 |
[7] | ZOU Xuan, LI Zongnan, CHEN Liang, LI Min, TANG Weiming, SHI Chuang. Modeling BeiDou IGSO and MEO Satellites Code Pseudorange Variations[J]. Geomatics and Information Science of Wuhan University, 2018, 43(11): 1661-1666. DOI: 10.13203/j.whugis20160275 |
[8] | LI Xin, ZHANG Xiaohong, ZENG Qi, PAN Lin, ZHU Feng. The Estimation of BeiDou Satellite-induced Code Bias and Its Impact on the Precise Positioning[J]. Geomatics and Information Science of Wuhan University, 2017, 42(10): 1461-1467. DOI: 10.13203/j.whugis20160062 |
[9] | LOU Yidong, GONG Xiaopeng, GU Shengfeng, ZHENG Fu, YI Wenting. The Characteristic and Effect of Code Bias Variations of BeiDou[J]. Geomatics and Information Science of Wuhan University, 2017, 42(8): 1040-1046. DOI: 10.13203/j.whugis20150107 |
[10] | FAN Lei, ZHONG Shiming, LI Zishen, OU Jikun. Effect of Tracking Stations Distribution on the Estimation of Differential Code Biases by GPS Satellites Based on Uncombined Precise Point Positioning[J]. Geomatics and Information Science of Wuhan University, 2016, 41(3): 316-321. DOI: 10.13203/j.whugis20140114 |