ZHANG Hui, HAO Jinming, LIU Weiping, ZHOU Rui, TIAN Yingguo. GPS/BDS Precise Point Positioning Model with Receiver DCB Parameters for Raw Observations[J]. Geomatics and Information Science of Wuhan University, 2019, 44(4): 495-500, 592. DOI: 10.13203/j.whugis20170119
Citation: ZHANG Hui, HAO Jinming, LIU Weiping, ZHOU Rui, TIAN Yingguo. GPS/BDS Precise Point Positioning Model with Receiver DCB Parameters for Raw Observations[J]. Geomatics and Information Science of Wuhan University, 2019, 44(4): 495-500, 592. DOI: 10.13203/j.whugis20170119

GPS/BDS Precise Point Positioning Model with Receiver DCB Parameters for Raw Observations

More Information
  • Author Bio:

    ZHANG Hui, PhD candidate, majors in multi-constellation GNSS precise positioning. E-mail:zh_ljpd@163.com

  • Received Date: January 05, 2018
  • Published Date: April 04, 2019
  • ue to ionospheric delays caused by the receiver code biases in the traditional multi-GNSS precise point positioning (PPP) using raw observations, the estimates can be negative values. An improved model of Global Positioning System/BeiDou Navigoction Satellite System (GPS/BDS) PPP with receiver differential code bias (DCB) parameters for raw observations is proposed in which receiver code biases on the first frequency of each system are constrained to zero and receiver DCB parameters are estimated. Ionospheric delays and receiver code biases are separated by the presented model. Additionally, the singularity between receiver clock offsets and ionospheric delays is reduced. GPS/BDS data from 4 stations of the Multi-GNSS experiment (MGEX) network are processed in static and kinematic modes. The results show that with the proposed PPP model, the average positioning accuracy and convergence time in static/kinematic mode are improved by 29.3% and 15.7%, 29.8% and 21.6%, respectively, in comparison with the traditional PPP model.
  • [1]
    Zumberge J, Heflin M, Jefferson D, et al. Precise Point Positioning for the Efficient and Robust Ana-lysis of GPS Data from Large Networks[J]. Journal of Geophysical Research:Solid Earth, 1997, 102(B3):5005-5017 doi: 10.1029/96JB03860
    [2]
    张小红, 郭斐, 李星星, 等. GPS/GLONASS组合精密单点定位研究[J].武汉大学学报·信息科学版, 2010, 35(1):9-12 http://ch.whu.edu.cn/CN/abstract/abstract823.shtml

    Zhang Xiaohong, Guo Fei, Li Xingxing, et al. Study on Precise Point Positioning Based on Combined GPS and GLONASS[J]. Geomatics and Information Science of Wuhan University, 2010, 35(1):9-12 http://ch.whu.edu.cn/CN/abstract/abstract823.shtml
    [3]
    任晓东, 张柯柯, 李星星, 等. BeiDou、Galileo、GLONASS、GPS多系统融合精密单点[J].测绘学报, 2015, 44(12):1307-1313 http://d.old.wanfangdata.com.cn/Periodical/chxb201512002

    Ren Xiaodong, Zhang Keke, Li Xingxing, et al. Precise Point Positioning with Multi-constellation Satellite Systems:BeiDou, Galileo, GLONASS, GPS[J]. Acta Geodaetica et Cartographica Sinica, 2015, 44(12):1307-1313 http://d.old.wanfangdata.com.cn/Periodical/chxb201512002
    [4]
    Chen J, Zhang Y, Wang J, et al. A Simplified and Unified Model of Multi-GNSS Precise Point Positioning[J]. Advances in Space Research, 2015, 55(1):125-134 doi: 10.1016/j.asr.2014.10.002
    [5]
    Tu R, Ge M, Zhang H, et al. The Realization and Convergence Analysis of Combined PPP Based on Raw Observation[J]. Advances in Space Research, 2013, 52(1):211-221 doi: 10.1016/j.asr.2013.03.005
    [6]
    Guo F, Li X, Zhang X, et al. Assessment of Precise Orbit and Clock Products for Galileo, BeiDou, and QZSS from IGS Multi-GNSS Experiment (MGEX)[J]. GPS Solutions, 2017, 21(1):279-290 doi: 10.1007/s10291-016-0523-3
    [7]
    Li X, Ge M, Dai X, et al. Accuracy and Reliability of Multi-GNSS Real-Time Precise Positioning:GPS, GLONASS, BeiDou, and Galileo[J]. Journal of Geodesy, 2015, 89(6):607-635 doi: 10.1007/s00190-015-0802-8
    [8]
    章红平, 高周正, 牛小骥, 等. GPS非差非组合精密单点定位算法研究[J].武汉大学学报·信息科学版, 2013, 38(12):1396-1399 http://ch.whu.edu.cn/CN/abstract/abstract2833.shtml

    Zhang Hongping, Gao Zhouzheng, Niu Xiaoji, et al. Research on GPS Precise Point Positioning with Un-differential and Un-combined Observations[J]. Geomatics and Information Science of Wuhan University, 2013, 38(12):1396-1399 http://ch.whu.edu.cn/CN/abstract/abstract2833.shtml
    [9]
    张小红, 左翔, 李盼.非组合与组合PPP模型比较及定位性能分析[J].武汉大学学报·信息科学版, 2013, 38(5):561-565 http://ch.whu.edu.cn/CN/abstract/abstract2636.shtml

    Zhang Xiaohong, Zuo Xiang, Li Pan. Mathematic Model and Performance Comparison Between Ionosphere-Free Combined and Uncombined Precise Point Positioning[J]. Geomatics and Information Science of Wuhan University, 2013, 38(5):561-565 http://ch.whu.edu.cn/CN/abstract/abstract2636.shtml
    [10]
    Zhang H, Gao Z, Ge M, et al. On the Convergence of Ionospheric Constrained Precise Point Positioning (IC-PPP) Based on Undifferential Uncombined Raw GNSS Observations[J]. Sensors, 2013, 13(11):15708-15725 doi: 10.3390/s131115708
    [11]
    辜声峰.多频GNSS非差非组合精密数据处理理论及其应用[D].武汉: 武汉大学, 2013 http://cdmd.cnki.com.cn/Article/CDMD-10486-1014135106.htm

    Gu Shengfeng. Research on the Zero-Difference Un-combined Data Processing Model for Multi-frequency GNSS and Its Applications[D]. Wuhan: Wuhan University, 2013 http://cdmd.cnki.com.cn/Article/CDMD-10486-1014135106.htm
    [12]
    Li X, Zhang X, Ren X, et al. Precise Positioning with Current Multi-constellation Global Navigation Satellite Systems:GPS, GLONASS, Galileo and BeiDou[J]. Scientific Reports, 2015, 5:8328-8341 doi: 10.1038/srep08328
    [13]
    Lou Y, Zheng F, Gu S, et al. Multi-GNSS Precise Point Positioning with Raw Single-Frequency and Dual-frequency Measurement Models[J]. GPS Solutions, 2016, 20(4):849-862 doi: 10.1007/s10291-015-0495-8
    [14]
    陈华.基于原始观测值的GNSS统一快速精密数据处理方法[D].武汉: 武汉大学, 2015 http://cdmd.cnki.com.cn/Article/CDMD-10486-1015305222.htm

    Chen Hua. An Efficient and Unified GNSS Raw Data Processing Strategy[D]. Wuhan: Wuhan University, 2015 http://cdmd.cnki.com.cn/Article/CDMD-10486-1015305222.htm
    [15]
    Liu T, Yuan Y, Zhang B, et al. Multi-GNSS Precise Point Positioning (MGPPP) Using Raw Observations[J]. Journal of Geodesy, 2017, 91(3):253-268 doi: 10.1007/s00190-016-0960-3
    [16]
    Hakansson M, Jensen A B O, Horemuz M, et al. Review of Code and Phase Biases in Multi-GNSS Positioning[J]. GPS Solutions, 2017, 21(3):849-860 doi: 10.1007/s10291-016-0572-7
  • Related Articles

    [1]TANG Jun, ZHONG Zhengyu, DING Mingfei, WU Xuequn. Ionospheric TEC Prediction in China Based on ENN Improved by PSO Algorithm[J]. Geomatics and Information Science of Wuhan University, 2024, 49(10): 1867-1878. DOI: 10.13203/j.whugis20220254
    [2]LI Yongtao, ZHAO Ang, LI Jianwen, CHE Tongyu, PAN Lin, CHEN Chen. Regional Ionospheric TEC Modeling and Accuracy Analysis Based on Observations from a Station[J]. Geomatics and Information Science of Wuhan University, 2022, 47(1): 69-78. DOI: 10.13203/j.whugis20190286
    [3]OU Ming, ZHEN Weimin, XU Jisheng, YU Xiao, LIU Yiwen, LIU Dun. Regional Ionospheric TEC Reconstruction by Data Assimilation Technique[J]. Geomatics and Information Science of Wuhan University, 2017, 42(8): 1075-1081. DOI: 10.13203/j.whugis20150297
    [4]SONG Fucheng, SHI Shuangshuang, FENG Jiandi. Construction of Ionospheric TEC Assimilation Model Based on Chapman Function[J]. Geomatics and Information Science of Wuhan University, 2016, 41(6): 784-790. DOI: 10.13203/j.whugis20150101
    [5]WANG Zemin, CHE Guowei, AN Jiachun. Comprehensive Observation and Analysis of Weddell Sea Anomaly in Antarctica[J]. Geomatics and Information Science of Wuhan University, 2015, 40(11): 1421-1427. DOI: 10.13203/j.whugis20150270
    [6]NIE Wenfeng, HU Wusheng, PAN Shuguo, SONG Yubing. )Extraction of Regional Ionospheric TEC from GPS Dual Observation[J]. Geomatics and Information Science of Wuhan University, 2014, 39(9): 1022-1027. DOI: 10.13203/j.whugis20130046
    [7]TANG Jun, YAO Yibin, CHEN Peng, ZHANG Shun. Prediction Models of Ionospheric TEC Improved by EMD Method[J]. Geomatics and Information Science of Wuhan University, 2013, 38(4): 408-411.
    [8]CHEN Peng, YAO Yibin, WU Han. TEC Prediction of Ionosphere Based on Time Series Analysis[J]. Geomatics and Information Science of Wuhan University, 2011, 36(3): 267-270.
    [9]LIN Jian, WU Yun, ZHU Fuying. Ionosphere TEC Anomalous Disturbance of Pre-seism[J]. Geomatics and Information Science of Wuhan University, 2009, 34(8): 975-978.
    [10]MENG Yang, WANG Zemin, E Dongchen. Ionopsheric TEC Anomalies of Pre-Earthquake Based on GPS Data[J]. Geomatics and Information Science of Wuhan University, 2008, 33(1): 81-84.
  • Cited by

    Periodical cited type(28)

    1. 吕峥,孙群,温伯威,张付兵,马京振. 顾及形状相似性的道路与居民地协同化简方法. 地球信息科学学报. 2024(05): 1270-1282 .
    2. 铁占琦. 利用改进的Hausdorff距离匹配多尺度线要素. 地理空间信息. 2024(05): 62-65 .
    3. 王庆社,王雅欣,姜青香,郭思慧. “天地图·北京”多源道路数据融合关键技术研究. 北京测绘. 2024(06): 874-879 .
    4. 陈钉均,梁芮嘉. 基于特征聚类驾驶员服从度跟驰模型参数标定. 计算机仿真. 2024(10): 126-132 .
    5. 齐杰,王中辉,李驿言. 基于图卷积神经网络的道路网匹配. 测绘通报. 2023(12): 19-24+44 .
    6. 吴冰娇,王中辉,杨飞. 用于多尺度道路网匹配的语义相似性计算模型. 测绘科学. 2022(03): 166-173 .
    7. 蒋阳升,俞高赏,胡路,李衍. 基于聚类站点客流公共特征的轨道交通车站精细分类. 交通运输系统工程与信息. 2022(04): 106-112 .
    8. 周秀华,李乃强. 基于多种相似度特征的道路实体融合方法. 测绘通报. 2021(08): 102-105+157 .
    9. 秦育罗,宋伟东,张在岩,孙小荣. 顾及几何特征和拓扑连续性的道路网匹配方法. 测绘通报. 2021(08): 55-60 .
    10. 杨飞,王中辉. 河系几何相似性的层次度量方法. 地球信息科学学报. 2021(12): 2139-2150 .
    11. 程绵绵,孙群,季晓林,赵云鹏. 改进平均Fréchet距离法及在化简评价中的应用. 测绘科学. 2020(03): 170-177 .
    12. 赵元棣,田英杰,吴佳馨. 航空器飞行轨迹相似性度量及聚类分析. 中国科技论文. 2020(02): 249-254 .
    13. Wenyue GUO,Anzhu YU,Qun SUN,Shaomei LI,Qing XU,Bowei WEN,Yuanfu LI. A Multisource Contour Matching Method Considering the Similarity of Geometric Features. Journal of Geodesy and Geoinformation Science. 2020(03): 76-87 .
    14. 秦育罗,郭冰,孙小荣. 改进Hausdorff距离及其在多尺度道路网匹配中的应用. 测绘科学技术学报. 2020(03): 313-318 .
    15. 郝志伟,李成名,殷勇,武鹏达,吴伟. 一种基于Fréchet距离的断裂等高线内插算法. 测绘通报. 2019(01): 65-68+74 .
    16. 郭文月,刘海砚,孙群,余岸竹,丁梓越. 顾及几何特征相似性的多源等高线匹配方法. 测绘学报. 2019(05): 643-653 .
    17. 宗琴,彭荃,秦万英. 一种基于模糊矩阵的空间面对象相似性度量算法. 北京测绘. 2019(10): 1218-1221 .
    18. 李兆兴,翟京生,武芳. 线要素综合的形状相似性评价方法. 武汉大学学报(信息科学版). 2019(12): 1859-1864 .
    19. 周家新,陈建勇,单志超,陈长康. 航空磁探中潜艇目标的联合估计检测方法研究. 兵工学报. 2018(05): 833-840 .
    20. 郭宁宁,盛业华,吕海洋,黄宝群,张思阳. 径向基函数神经网络的路网自动匹配算法. 测绘科学. 2018(03): 45-50 .
    21. 张瀚,李静,吕品,徐永志,刘格林. 六角格网的弧线矢量数据量化拟合方法. 计算机辅助设计与图形学学报. 2018(04): 557-567 .
    22. 邵世维,刘辉,肖立霞,王恒. 一种基于Fréchet距离的复杂线状要素匹配方法. 武汉大学学报(信息科学版). 2018(04): 516-521 .
    23. 苏满佳,张逸鸿,谢荣臻,朱海飞,管贻生,毛世鑫. 连续软体机器人的结构范型与形态复现. 机器人. 2018(05): 640-647+672 .
    24. 宗琴,姜树辉,刘艳霞. 多尺度矢量地图中模糊相似变换及其度量模型. 测绘科学. 2018(11): 72-78 .
    25. 郭文月,刘海砚,孙群,余岸竹,季晓林. 利用最长公共子序列度量线要素相似性的方法. 测绘科学技术学报. 2018(05): 518-523 .
    26. 郭宁宁,盛业华,黄宝群,吕海洋,张思阳. 基于人工神经网络的多特征因子路网匹配算法. 地球信息科学学报. 2016(09): 1153-1159 .
    27. 杨亚辉. 利用几何相似性快速测量鱼重的数学模型. 电子技术与软件工程. 2016(20): 182-183 .
    28. 逯跃锋,张奎,刘硕,吴跃,赵硕,李强,冯晨. 一种基于斜率差和方位角的矢量数据匹配算法. 山东大学学报(工学版). 2016(06): 31-39 .

    Other cited types(28)

Catalog

    Article views (1440) PDF downloads (313) Cited by(56)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return