YUAN Haijun, ZHANG Zhetao, HE Xiufeng, XU Tianyang, XU Xueyong. Stability Analysis of BDS-3 Satellite Differential Code Bias and Its Impacts on Single Point Positioning[J]. Geomatics and Information Science of Wuhan University, 2023, 48(3): 425-432. DOI: 10.13203/j.whugis20200517
Citation: YUAN Haijun, ZHANG Zhetao, HE Xiufeng, XU Tianyang, XU Xueyong. Stability Analysis of BDS-3 Satellite Differential Code Bias and Its Impacts on Single Point Positioning[J]. Geomatics and Information Science of Wuhan University, 2023, 48(3): 425-432. DOI: 10.13203/j.whugis20200517

Stability Analysis of BDS-3 Satellite Differential Code Bias and Its Impacts on Single Point Positioning

More Information
  • Received Date: October 01, 2020
  • Available Online: March 23, 2023
  • Published Date: March 04, 2023
  •   Objectives  Differential code bias (DCB) is one of the important factors affecting the accuracy of ionospheric monitoring and high-precision positioning. The establishment of DCB correction model is of great significance for high-precision positioning.
      Methods  Aiming at the problem that the BDS-3 satellite clock time references of broadcast ephemeris and precise ephemeris are not uniform, firstly, we introduce the DCB estimation methods of Chinese Academy of Sciences (CAS) and German Aerospace Center(DLR), and give the accuracy evaluation and analysis results of some DCB products. Secondly, the DCB correction models of BDS-3 single-frequency and dual-frequency standard point positioning (SPP), dual-frequency precise point positioning (PPP) are proposed. Finally, both SPP and PPP experiments are carried out with different schemes by using five-day measured data of the multi-GNSS experiments (MGEX) stations.
      Results  The results show that the MGEX DCB products have high stability. And the accuracies of single-frequency and dual-frequency SPP are increased by 48%—85% and 71%—91% after using DCB correction, respectively. The convergence time of dual-frequency static PPP is reduced by 56%—83% after using DCB correction.
      Conclusions  It can be concluded that the satellite DCB correction can improve the SPP positioning accuracy and reduce the PPP convergence time.
  • [1]
    张小红, 胡家欢, 任晓东. PPP/PPP-RTK新进展与北斗/GNSS PPP定位性能比较[J]. 测绘学报, 2020, 49(9): 1084-1100.

    Zhang Xiaohong, Hu Jiahuan, Ren Xiaodong. New Progress of PPP/PPP-RTK and Positioning Performance Comparison of BDS/GNSS PPP[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(9): 1084-1100.
    [2]
    王宁波, 袁运斌, 张宝成, 等. GPS民用广播星历中ISC参数精度分析及其对导航定位的影响[J]. 测绘学报, 2016, 45(8): 919-928.

    Wang Ningbo, Yuan Yunbin, Zhang Baocheng, et al. Accuracy Evaluation of GPS Broadcast Inter-signal Correction(ISC)Parameters and Their Impacts on GPS Standard Positioning[J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(8): 919-928.
    [3]
    张强, 赵齐乐, 章红平, 等. 利用北斗观测实验网解算北斗卫星差分码偏差[J]. 武汉大学学报(信息科学版), 2016, 41(12): 1649-1655. doi: 10.13203/j.whugis20140640

    Zhang Qiang, Zhao Qile, Zhang Hongping, et al. BDS Differential Code Bias Estimation Using BeiDou Experimental Tracking Stations[J]. Geomatics and Information Science of Wuhan University, 2016, 41(12): 1649-1655. doi: 10.13203/j.whugis20140640
    [4]
    Montenbruck O, Hauschild A. Code Biases in Multi-GNSS Point Positioning [C]// ION ITM 2013, San Diego, USA, 2013.
    [5]
    Guo F, Zhang X H, Wang J L. Timing Group Delay and Differential Code Bias Corrections for BeiDou Positioning[J]. Journal of Geodesy, 2015, 89(5): 427-445. doi: 10.1007/s00190-015-0788-2
    [6]
    姚宜斌, 刘磊, 孔建, 等. GIM和不同约束条件相结合的BDS差分码偏差估计[J]. 测绘学报, 2017, 46(2): 135-143.

    Yao Yibin, Liu Lei, Kong Jian, et al. Estimation of BDS DCB Combining GIM and Different Zero-Mean Constraints[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(2): 135-143.
    [7]
    徐磊, 常国宾, 高井祥, 等. 附加闭合差约束的BDS频间偏差估计模型[J]. 武汉大学学报(信息科学版), 2021, 46(4): 520-529. doi: 10.13203/j.whugis20190187

    Xu Lei, Chang Guobin, Gao Jingxiang, et al. Estimation of BDS DCB Based on Closure Constraint[J]. Geomatics and Information Science of Wuhan University, 2021, 46(4): 520-529. doi: 10.13203/j.whugis20190187
    [8]
    Li X X, Xie W L, Huang J X, et al. Estimation and Analysis of Differential Code Biases for BDS‑3/BDS‑2 Using iGMAS and MGEX Observations[J]. Journal of Geodesy, 2019, 93(3): 419-435. doi: 10.1007/s00190-018-1170-y
    [9]
    刘乾坤, 隋立芬, 肖国锐, 等. MGEX北斗差分码偏差产品质量分析[J]. 大地测量与地球动力学, 2016, 36(11): 963-967.

    Liu Qiankun, Sui Lifen, Xiao Guorui, et al. Quality Analysis of MGEX BDS Differential Code Bias[J]. Journal of Geodesy and Geodynamics, 2016, 36(11): 963-967.
    [10]
    梅登奎, 闻德保. BDS卫星差分码偏差稳定性分析及其短期预报[J]. 大地测量与地球动力学, 2020, 40(7): 746-750.

    Mei Dengkui, Wen Debao. Stability Analysis and Short-Term Predictions of BDS Differential Code Bias[J]. Journal of Geodesy and Geodynamics, 2020, 40(7): 746-750.
    [11]
    曾添, 隋立芬, 鲍亚东, 等. BDS卫星端差分码偏差对定位的影响及改正模型研究[J]. 大地测量与地球动力学, 2017, 37(1): 53-57.

    Zeng Tian, Sui Lifen, Bao Yadong, et al. The Impact of Satellite Differential Code Bias on BDS Positioning and Correction Model Research[J]. Journal of Geodesy and Geodynamics, 2017, 37(1): 53-57.
    [12]
    谷世铭, 党亚民, 王虎, 等. 北斗差分码偏差改正对单点定位的影响[J]. 测绘科学, 2020, 45(10): 10-15.

    Gu Shiming, Dang Yamin, Wang Hu, et al. The Effect of BeiDou DCB Correction on Single Point Positioning[J]. Science of Surveying and Mapping, 2020, 45(10): 10-15.
    [13]
    李子申, 王宁波, 袁运斌. 多模多频卫星导航系统码偏差统一定义与处理方法[J]. 导航定位与授时, 2020, 7(5): 10-20.

    Li Zishen, Wang Ningbo, Yuan Yunbin. A Unified Definition and Processing Method of Observable-Specific Signal Biases for Multi-mode and Multi-frequency Global Navigation Satellite System[J]. Navigation Positioning and Timing, 2020, 7(5): 10-20.
    [14]
    Li Z, Yuan Y, Li H, et al. Two-Step Method for the Determination of the Differential Code Biases of COMPASS Satellites[J]. Journal of Geodesy, 2012, 86(11): 1059-1076. doi: 10.1007/s00190-012-0565-4
    [15]
    Wang N, Yuan Y, Li Z, et al. Determination of Differential Code Biases with Multi-GNSS Observations[J]. Journal of Geodesy, 2016, 90(3): 209-228. doi: 10.1007/s00190-015-0867-4
    [16]
    Montenbruck O, Hauschild A, Steigenberger P. Differential Code Bias Estimation Using Multi‐GNSS Observations and Global Ionosphere Maps[J]. Navigation, 2015, 61(3): 191-201. doi: 10.1002/navi.64
    [17]
    聂文锋. 多系统GNSS全球电离层监测及差分码偏差统一处理[D]. 威海: 山东大学, 2019.

    Nie Wenfeng. Multi-GNSS Global Ionosphere Monitoring and the Unified Handling of the Differential Code Bias [D]. Weihai: Shandong University, 2019.
    [18]
    张辉, 郝金明, 刘伟平, 等. 估计接收机差分码偏差的GPS/BDS非组合精密单点定位模型[J]. 武汉大学学报(信息科学版), 2019, 44(4): 495-500. doi: 10.13203/j.whugis20170119

    Zhang Hui, Hao Jinming, Liu Weiping, et al. GPS/BDS Precise Point Positioning Model with Receiver DCB Parameters for Raw Observations[J]. Geomatics and Information Science of Wuhan University, 2019, 44(4): 495-500. doi: 10.13203/j.whugis20170119
    [19]
    舒宝, 刘晖, 张明, 等. 北斗系统硬件延迟解算及精度分析[J]. 武汉大学学报(信息科学版), 2016, 41(2): 279-284. doi: 10.13203/j.whugis20140058

    Shu Bao, Liu Hui, Zhang Ming, et al. Evaluation and Analysis of BDS Instrumental Biases[J]. Geomatics and Information Science of Wuhan University, 2016, 41(2): 279-284. doi: 10.13203/j.whugis20140058
    [20]
    Dai P, Ge Y, Qin W, et al. BDS-3 Time Group Delay and Its Effect on Standard Point Positioning[J]. Remote Sensing, 2019, 11(15): 1819-1848.
  • Related Articles

    [1]WEI Erhu, LIU Xuexi, WANG Lingxuan, LIU Jingnan. Analysis and Assessment of BDS/GPS Combined Precise Point Positioning Accuracy[J]. Geomatics and Information Science of Wuhan University, 2018, 43(11): 1654-1660. DOI: 10.13203/j.whugis20160568
    [2]SHU Bao, LIU Hui, ZHANG Jinsheng, PAN Guofu, JIANG Jun. Performance Assessment of Partial Ambiguity Resolution Based on BDS/GPS Combined Positioning[J]. Geomatics and Information Science of Wuhan University, 2017, 42(7): 989-994, 1001. DOI: 10.13203/j.whugis20150017
    [3]ZHANG Rui, YANG Yuanxi, ZHANG Qin, HUANG Guanwen, WANG Le, YAN Xingyuan, QU Wei. Contribution Analysis of BDS/GPS Combined Orbit Determination[J]. Geomatics and Information Science of Wuhan University, 2017, 42(5): 600-608. DOI: 10.13203/j.whugis20150081
    [4]SUI Xin, SHI Chuang, LI Min, XU Zongqiu, XU Aigong. Impact Analysis of GPS/BDS Combined Positioning on Ambiguity Search Region for Short Baseline[J]. Geomatics and Information Science of Wuhan University, 2016, 41(10): 1372-1378. DOI: 10.13203/j.whugis20150479
    [5]GAO Xiao, DAI Wujiao, LI Shijia. Interior Performance Test of High Precision GPS/BDS Compatible Receivers[J]. Geomatics and Information Science of Wuhan University, 2015, 40(6): 795-799. DOI: 10.13203/j.whugis20130459
    [6]Dongmei, XU Houze. Determination of Geoid Using GPS Leveling and Gravity Data[J]. Geomatics and Information Science of Wuhan University, 2011, 36(5): 621-624.
    [7]LI Yihe, SHEN Yunzhong. Impact of Temporal Correlation of GPS Observations on Baseline Solution[J]. Geomatics and Information Science of Wuhan University, 2011, 36(4): 427-430.
    [8]XIONG Yongliang, HUANG Dingfa, XU Shaoguang, LIAO Hua. Long Distance Kinematic GPS Data Processing and Kinematic Crustal Deformation Features Analysis of Wenchuan Earthquake[J]. Geomatics and Information Science of Wuhan University, 2010, 35(3): 265-269.
    [9]ZENG Xuping. GPS Data Processing of Landslide Vertical Deformation Monitoring[J]. Geomatics and Information Science of Wuhan University, 2004, 29(3): 201-204.
    [10]JIANG Weiping, LIU Jingnan, YE Shirong. The Systematical Error Analysis of Baseline Processing in GPS Network[J]. Geomatics and Information Science of Wuhan University, 2001, 26(3): 196-199,238.
  • Cited by

    Periodical cited type(8)

    1. 翟高鹏,李文彬,薛新春,何杰. 空间直角坐标分量中误差转换到相邻点基线分量中误差的算法设计与实现. 测绘与空间地理信息. 2024(02): 204-206+210 .
    2. 张亮亮,李亚泽,熊磊,杨鹏飞,闵恒良. “北斗云”——电力时空大数据云平台技术与应用研究. 西部资源. 2023(02): 189-192 .
    3. 伏明星,李仲勤,张瑞鹏. 宝兰高铁某标段CPI复测数据处理与稳定性分析. 测绘地理信息. 2021(06): 40-45 .
    4. 刘洋洋,党亚民,许长辉. 基于GAMIT对国家GNSS基准站进行的北斗基线解算分析. 测绘工程. 2019(03): 25-29 .
    5. 张波. 北斗卫星导航系统用于高精度工程控制网建立的可行性分析. 北京测绘. 2019(07): 792-796 .
    6. 白正伟,张勤,黄观文,景策,王家兴. “轻终端+行业云”的实时北斗滑坡监测技术. 测绘学报. 2019(11): 1424-1429 .
    7. 闫子耀. 基于北斗系统的船舶导航系统定位精度研究. 中国水运(下半月). 2018(07): 49-50 .
    8. 闫子耀. 基于北斗系统的船舶导航系统定位精度研究. 中国水运(下半月). 2018(14): 49-50 .

    Other cited types(1)

Catalog

    Article views (590) PDF downloads (116) Cited by(9)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return