LOU Yidong, GONG Xiaopeng, GU Shengfeng, ZHENG Fu, YI Wenting. The Characteristic and Effect of Code Bias Variations of BeiDou[J]. Geomatics and Information Science of Wuhan University, 2017, 42(8): 1040-1046. DOI: 10.13203/j.whugis20150107
Citation: LOU Yidong, GONG Xiaopeng, GU Shengfeng, ZHENG Fu, YI Wenting. The Characteristic and Effect of Code Bias Variations of BeiDou[J]. Geomatics and Information Science of Wuhan University, 2017, 42(8): 1040-1046. DOI: 10.13203/j.whugis20150107

The Characteristic and Effect of Code Bias Variations of BeiDou

Funds: 

The National Key Research and Development Plan 2016YFB0501802

the National Natural Science Foundation of China 41374034

the National Natural Science Foundation of China 41504028

the National High Technology Research and Development Program of China (863 Program) 2014AA123101

More Information
  • Author Bio:

    LOU Yidong, PhD, professor, specializes in the real time orbit determining and GNSS precise data processing. E-mail: ydlou@whu.edu.cn

  • Corresponding author:

    GONG Xiaopeng, PhD candidate. E-mail:xpgong@whu.edu.cn

  • Received Date: July 03, 2015
  • Published Date: August 04, 2017
  • Different from other navigation system, there is a divergence between code and phase observables of BeiDou Navigation Satellite System (BDS). In this paper, we analyze the characteristic of code bias variations and propose a polynomial correction model of GEO, IGSO and MEO satellites. Firstly, different stations and different receiver types observables of BeiDou Experiment Tracking Stations (BETS) of Wuhan University, Crustal Movement Observation Network of China (CMONOC) and Multi-GNSS Experiment campaign(MGEX) of IGS are used for analysis and verification. The results show that the code bias variations, which are dependent with satellite types and frequency and independent with receiver type, station position and observation time, vary with satellite elevations. Besides, the code bias variations of satellites may reach up to 1.5 m and can be divided into two groups (GEO/IGSO and MEO). Secondly, based on the analysis of code bias variations of BDS, we established a polynomial correction model of IGSO/MEO code bias variations. Besides, since the elevation of a GEO satellite remains unchanged, we propose to model the single-difference fractional cycle bias with wide-spread ground stations. Then, a correction model for code bias variations of GEO satellites is established by using the consistency of the fractional of wide-lane ambiguity of single-difference between satellites. Finally, the improvement brought by applying our correction model is validated by various strategies, e.g. residual distribution of pseudo-range is more close to normal distribution, and the positioning accuracy of dual-frequency single point positioning as well as single-frequency precise point positioning is improved.
  • [1]
    中国卫星导航系统管理办公室. 北斗卫星导航系统空间信号接口控制文件(2. 0版)[OL]. http://www.chinabeidou.gov.cn/tongzhi/371.html, 2013

    China Satellite Navigation Office (CSNO). BeiDou Navigation Satellite System Signal in Space Interface Control Document, Open Service Signal (Version 2.0)[OL]. http://www.chinabeidou.gov.cn/tongzhi/371.html, 2013
    [2]
    Hauschild A, Montenbruck O, Sleewaegen J M, et al. Characterization of Compass M-1 Signals[J]. GPS Solutions, 2012, 16:117-126 doi: 10.1007/s10291-011-0210-3
    [3]
    Montenbruck O, Rizos C, Weber R, et al. Getting a Grip on Multi-GNSS-The International GNSS Service MGEX Campaign[J]. GPS World, 2013, 24(7):44-49 https://www.researchgate.net/publication/259899613_Getting_a_grip_on_multi-GNSS-the_international_GNSS_service_MGEX_campaign
    [4]
    Wanninger L, Beer S. BeiDou Satellite-Induced Code Pseudorange Variations:Diagnosis and Therapy[J]. GPS Solutions, 2015, 19(4):639-648 doi: 10.1007/s10291-014-0423-3
    [5]
    张小红, 丁乐乐.北斗二代观测值质量分析及随机模型精化[J].武汉大学学报·信息科学版, 2013, 38(7):832-836 http://ch.whu.edu.cn/CN/abstract/abstract2696.shtml

    Zhang Xiaohong, Ding Lele. Quality Analysis of the Second Generation Compass Observables and Stochastic Model Refining[J]. Geomatics and Information Science of Wuhan University, 2013, 38(7):832-836 http://ch.whu.edu.cn/CN/abstract/abstract2696.shtml
    [6]
    Forssell B, Martin-Neira M, Harrisz R A. Carrier Phase Ambiguity Resolution in GNSS-2[C]. The ION GPS-97, Kansas City, USA, 1997
    [7]
    张小红, 李盼, 李星星, 等.宽巷载波相位模糊度小数偏差时变特性分析[J].测绘学报, 2013, 42(6):798-803 http://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201306003.htm

    Zhang Xiaohong, Li Pan, Li Xingxing, et al. An Analysis of Time-Varying Property of Widelane Carrier Phase Ambiguity Fractional Bias[J]. Acta Geodaetica et Cartographica Sinica, 2013, 42(6):798-803 http://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201306003.htm
    [8]
    Yang Y X, Li J L, Wang A B, et al. Preliminary Assessment of the Navigation and Positioning Performance of BeiDou Regional Navigation Satellite System[J]. Science China:Earth Sciences, 2014(57):144-152 doi: 10.1007/s11430-013-4769-0
    [9]
    Shi C, Gu S, Lou Y, et al. An Improved Approach to Model Ionospheric Delays for Single-Frequency Precise Point Positioning[J]. Advances in Space Research, 2012, 49(12):1698-1708 doi: 10.1016/j.asr.2012.03.016
  • Related Articles

    [1]ZHU Shaolin, YUE Dongjie, HE Lina, CHEN Jian, LIU Shengnan. BDS-2/BDS-3 Joint Triple-Frequency Precise Point Positioning Models and Bias Characteristic Analysis[J]. Geomatics and Information Science of Wuhan University, 2023, 48(12): 2049-2059. DOI: 10.13203/j.whugis20210273
    [2]LIU Zhiqiang, YUE Dongjie, WANG Hu, ZHENG Dehua. An Approach for Real-Time GPS/GLONASS Satellite Clock Estimation with GLONASS Code Inter-Frequency Biases Compensation[J]. Geomatics and Information Science of Wuhan University, 2017, 42(9): 1209-1215. DOI: 10.13203/j.whugis20150542
    [3]RUAN Rengui, WU Xianbing, FENG Laiping. Comparison of Observation Models and Ionospheric Elimination Approaches for Single Frequency Precise Point Positioning[J]. Geomatics and Information Science of Wuhan University, 2013, 38(9): 1023-1028.
    [4]ZOU Xuan, JIANG Weiping, SU Lina, LIU Jingnan. A New Single-Frequency PPP Method Using Dynamic Reference Network[J]. Geomatics and Information Science of Wuhan University, 2013, 38(4): 403-407.
    [5]TU Rui, HUANG Guanwen, ZHANG Qin, WANG Li. PPP Algorithm of Single Frequency Based on Corrections of Single-base Station and Ionospheric Parameters Estimation[J]. Geomatics and Information Science of Wuhan University, 2012, 37(2): 170-173.
    [6]TU Rui, HUANG Guanwen, ZHANG Qin, WANG Li. The Research of Dual Frequency Solution Method for Single Frequency Precise Point Positioning(PPP) Based on SEID Model[J]. Geomatics and Information Science of Wuhan University, 2011, 36(10): 1187-1190.
    [7]SHI Chuang, GU Shengfeng, GENG Changjiang, SONG Weiwei. High-Precision Single-Frequency Point Positioning with Randomness of Ionosphere Delay Correction in Consideration[J]. Geomatics and Information Science of Wuhan University, 2011, 36(7): 807-810.
    [8]LIU Jihua, OU Jikun, SUN Baoqi, ZHONG Shiming. The GEO Satellite Precise Orbit Determination Based on Inter-satellite Single Difference Method[J]. Geomatics and Information Science of Wuhan University, 2011, 36(1): 24-28.
    [9]SONG Weiwei, SHI Chuang, YAO Yibin, YE Shirong. Ionosphere Delay Processing Methods and Positioning Precision of Single Frequency Precise Point Positioning[J]. Geomatics and Information Science of Wuhan University, 2009, 34(7): 778-781.
    [10]ZHANG Xiaohong, LI Xingxing, GUO Fei, ZHANG Ming. Realization and Precision Analysis of Single-Frequency Precise Point Positioning Software[J]. Geomatics and Information Science of Wuhan University, 2008, 33(8): 783-787.
  • Cited by

    Periodical cited type(11)

    1. 段博文,白征东,郭锦萍. 北斗二号卫星伪距偏差分析与建模. 测绘工程. 2024(02): 18-27 .
    2. 高扬,沙海,楚恒林,王梦丽. 北斗B1C、B2a信号非理想性分析及接收约束建议. 武汉大学学报(信息科学版). 2023(04): 587-592 .
    3. 耿涛,李钟兴,谢新,马壮,赵齐乐. GNSS接收机伪距偏差确定方法及其对定位的影响. 武汉大学学报(信息科学版). 2023(07): 1134-1145 .
    4. 周中华,万祥,程艳,刘志忠,汪文君,张雪丽. 一种地基GNSS接收机差分码偏差估算方法. 空间科学学报. 2022(01): 170-178 .
    5. 许海林,周恩泽,童梦想,鄂盛龙,田翔,罗颖婷. GPS/BDS/Galileo单点定位精度分析. 测绘地理信息. 2022(04): 19-24 .
    6. 李浩东,赵齐乐,陶钧,龙宇浩. 北斗三号卫星FCB估计及其模糊度固定. 武汉大学学报(信息科学版). 2022(09): 1439-1446 .
    7. 慕仁海,党亚民,许长辉. BDS-3新频点单点定位研究. 测绘通报. 2021(03): 12-17 .
    8. 毛飞宇,龚晓鹏,辜声峰,王琛琛,楼益栋. 北斗三号卫星导航信号接收机端伪距偏差建模与验证. 测绘学报. 2021(04): 457-465 .
    9. 徐宗秋,丁新展,徐彦田,唐龙江,李磊,胡艳阳. BDS静态精密单点定位模糊度固定解精度分析. 测绘科学. 2019(07): 30-34 .
    10. 李森,周命端,陈积旭. 北斗数据工程控制网应用实验及精度分析. 测绘科学. 2019(09): 1-6 .
    11. 唐卫明,刘前,高柯夫,邓辰龙,崔健慧,沈明星. 北斗伪距码偏差对基线解算的影响分析. 武汉大学学报(信息科学版). 2018(08): 1199-1206 .

    Other cited types(13)

Catalog

    Article views (1931) PDF downloads (596) Cited by(24)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return