ZHAO Zhibo, REN Xiaodong, ZHANG Xiaohong, CHEN Jun, MA Fujian. Regional Ionospheric Modeling and Accuracy Assessment Using GNSS/LEO Satellites Observations[J]. Geomatics and Information Science of Wuhan University, 2021, 46(2): 262-269,295. DOI: 10.13203/j.whugis20190252
Citation: ZHAO Zhibo, REN Xiaodong, ZHANG Xiaohong, CHEN Jun, MA Fujian. Regional Ionospheric Modeling and Accuracy Assessment Using GNSS/LEO Satellites Observations[J]. Geomatics and Information Science of Wuhan University, 2021, 46(2): 262-269,295. DOI: 10.13203/j.whugis20190252

Regional Ionospheric Modeling and Accuracy Assessment Using GNSS/LEO Satellites Observations

Funds: 

The National Science Fund for Distinguished Young Scholars 41825009

the Youth Program of National Natural Science Foundation of China 41904026

the Wuhan Science and Technology Project 2018010401011270

More Information
  • Author Bio:

    ZHAO Zhibo, master, specializes in LEO-augmented GNSS and ionospheric modeling. E-mail: zbzhao@whu.edu.cn

  • Corresponding author:

    REN Xiaodong, PhD. E-mail: renxiaodongfly@gmail.com

  • Received Date: November 07, 2019
  • Published Date: February 04, 2021
  • High-precision ionospheric model is of great significance for improving the positioning accuracy of navigation satellite system. With the rapid development of low earth orbit satellites, the establishment of a high-precision ionospheric model has provided new opportunities. Based on the simulation data, this paper obtains LEO (low earth orbit) and GNSS (global navigation satellite system) satellites observation data of January 1 to 30, 2017 by means of simulation. The constellation types include 60, 96, 192 and 288 satellites respectively. Based on these data and taking African region as an example, the coverage of GNSS and LEO satellites' ionospheric pierce points and the joint modeling accuracy are studied. The results show that, after LEO satellites are added, the distribution of ionospheric pierce points is significantly improved, which leads to a noticeable rise of their density. The range of ionospheric pierce points of single low-orbit satellite is larger than that of GNSS satellite, and the altitude angle and azimuth angle of LEO satellite change remarkably. With the increase of the number of low-orbit satellites, the accuracy of joint modeling also rises up. Within different latitudes of 30°E at UTC 12:00, the difference between GNSS-only and GNSS+288 LEO ionospheric modeling results is the largest, reaching -1.6 TECU. With the increase of modeling time, the difference between the joint modeling results and GNSS-only results gradually decreases.
  • [1]
    Schaer S. Mapping and Predicting the Earths Ionosphere Using the Global Positioning System [D]. Bern, Switzerland: University of Bern, 1999
    [2]
    蔡昌盛, 高井祥, 李征航.利用GPS监测电离层总电子含量的季节性变化[J].武汉大学学报·信息科学版, 2006, 31(5): 451-453 http://ch.whu.edu.cn/article/id/2462

    Cai Changsheng, Gao Jingxiang, Li Zhenghang. Monitoring Seasonal Variations of Ionospheric TEC Using GPS Measurement[J]. Geomatics and Information Science of Wuhan University, 2006, 31(5): 451-453 http://ch.whu.edu.cn/article/id/2462
    [3]
    霍星亮.基于GNSS的电离层形态监测与延迟模型研究[D].武汉: 中国科学院测量与地球物理研究所, 2008

    Huo Xingliang. Research on Ionospheric Morphology Monitoring and Delay Model Based on GNSS[D]. Wuhan: Institute of Geodesy and Geophysics, Chinese Academy of Sciences, 2008
    [4]
    李征航, 陈锴, 刘万科, 等. GNSS电离层延迟模型的数学统一与方法扩展[J].武汉大学学报·信息科学版, 2007, 32(8): 699-703 http://ch.whu.edu.cn/article/id/1967

    Li Zhenghang, Chen Kai, Liu Wanke, et al. Mathematical Unification and Method Expansion of GNSS Ionospheric Delay Model[J]. Geomatics and Information Science of Wuhan University, 2007, 32(8):699-703 http://ch.whu.edu.cn/article/id/1967
    [5]
    袁运斌.基于GPS的电离层监测及延迟改正理论与方法的研究[D].武汉: 中国科学院测量与地球物理研究所, 2002

    Yuan Yunbin. Study on Theories and Methods of Correcting Ionospheric Delay and Monitoring Ionosphere Based on GPS[D]. Wuhan: Institute of Geodesy and Geophysics, Chinese Academy of Sciences, 2002
    [6]
    朱永兴, 谭述森, 任夏, 等. GNSS全球广播电离层模型精度分析[J].武汉大学学报·信息科学版, 2020, 45(5):768-775 doi: 10.13203/j.whugis20180439

    Zhu Yongxing, Tan Shusen, Ren Xia, et al. Accuracy Analysis of GNSS Global Broadcast Ionospheric Model[J]. Geomatics and Information Science of Wuhan University, 2020, 45(5):768-775 doi: 10.13203/j.whugis20180439
    [7]
    Feltens J, Dow J M, Martín-Mur T J, et al. Routine Production of Ionosphere TEC Maps at ESOC-First Results (IGS Presentation) [C]. The 1998 IGS AC Workshop, Darmstadt, Germany, 1998
    [8]
    Mannucci A J, Wilson B D, Yuan D N, et al. A Global Mapping Technique for GPS-Derived Ionospheric Total Electron Content Measurements [J]. Radio Science, 1998, 33(31):565-582
    [9]
    Hernández-Pajares M, Juan J M, Sanz J. New Approaches in Global Ionospheric Determination Using Ground GPS Data [J]. Journal of Atmospheric and Solar-Terrestrial Physics, 1999, 61(16):1 237-1 247 doi: 10.1016/S1364-6826(99)00054-1
    [10]
    章红平, 韩文慧, 黄玲, 等.地基GNSS全球电离层延迟建模[J].武汉大学学报·信息科学版, 2012, 37(10):1 186-1 189 http://ch.whu.edu.cn/article/id/355

    Zhang Hongping, Han Wenhui, Huang Ling, et al. Modeling Global Ionospheric Delay with IGS Ground-Based GNSS Observations [J]. Geomatics and Information Science of Wuhan University, 2012, 37(10):1 186-1 189 http://ch.whu.edu.cn/article/id/355
    [11]
    陈鹏, 陈家君. GPS/GLONASS融合的全球电离层格网模型结果分析[J].大地测量与地球动力学, 2014, 34(5):70-74 https://www.cnki.com.cn/Article/CJFDTOTAL-DKXB201405015.htm

    Chen Peng, Chen Jiajun. Analysis of Global Ionospheric Grid Model Integrated GPS/GLONASS [J]. Journal of Geodesy and Geodynamics, 2014, 34(5):70-74 https://www.cnki.com.cn/Article/CJFDTOTAL-DKXB201405015.htm
    [12]
    党亚民, 王虎, 赵文娇, 等.融合BDS/GPS/GLONASS反演全球电离层特性研究[J].大地测量与地球动力学, 2015, 35(1):87-91 https://www.cnki.com.cn/Article/CJFDTOTAL-DKXB201501024.htm

    Dang Yamin, Wang Hu, Zhao Wenjiao, et al. Research of the Characteristics of Inversing Global Ionospheric with Fusing of BDS, GPS and GLONASS [J]. Journal of Geodesy and Geodynamics, 2015, 35(1):87-91 https://www.cnki.com.cn/Article/CJFDTOTAL-DKXB201501024.htm
    [13]
    张瑞.多模GNSS实时电离层精化建模及其应用研究[D].武汉: 武汉大学, 2013

    Zhang Rui. Theory and Method on Multimode GNSS Real-Time Refinement Ionospheric Modeling and Its Application[D]. Wuhan: Wuhan University, 2013
    [14]
    熊波, 万卫星, 宁百齐, 等.基于北斗、GLONASS和GPS系统的中低纬电离层特性联合探测[J].地球物理学报, 2014, 57(11):3 586-3 599 https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201411013.htm

    Xiong Bo, Wan Weixing, Ning Baiqi, et al. Investigation of Mid- and Low-Latitude Ionosphere Based on BDS, GLONASS and GPS Observations[J]. Chinese Journal of Geophysics, 2014, 57(11):3 586-3 599 https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201411013.htm
    [15]
    Ren X, Zhang X, Xie W, et al. Global Ionospheric Modelling Using Multi-GNSS: BeiDou, Galileo, GLONASS and GPS[J]. Scientific Reports, 2016, 6: 33 499 doi: 10.1038/srep33499
    [16]
    赵莹, 张小红. COSMIC掩星观测数据反演电离层电子密度廓线[J].武汉大学学报·信息科学版, 2010, 35(6): 644-648 http://ch.whu.edu.cn/article/id/980

    Zhao Ying, Zhang Xiaohong. Inversion of Ionospheric Electron Density Profiles with COSMIC Occultation Data[J]. Geomatics and Information Science of Wuhan University, 2010, 35(6):644-648 http://ch.whu.edu.cn/article/id/980
    [17]
    Alizadeh M M, Schuh H, Todorova S, et al. Global Ionosphere Maps of VTEC from GNSS, Satellite Altimetry, and Formosat-3/COSMIC Data[J]. Journal of Geodesy, 2011, 85(12): 975-987 doi: 10.1007/s00190-011-0449-z
    [18]
    Chen P, Yao W, Zhu X. Combination of Ground- and Space-Based Data to Establish a Global Ionospheric Grid Model[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(2): 1 073-1 081 doi: 10.1109/TGRS.2014.2333522
    [19]
    de Selding P B. SpaceX to Build 4 000 Broadband Satellites in Seattle [OL]. http://spacenews.com/spacex-opening-seattle-plant-to-build-4000-broadband-satellites/, 2015
    [20]
    de Selding P B. Virgin, Qualcomm Invest in OneWeb Satellite Internet Venture [OL]. http://spacenews.com/virgin-qualcomm-invest-in-global-satellite-internet-plan/, 2015
    [21]
    Bilitza D, Altadill D, Truhlik V, et al. International Reference Ionosphere 2016: From Ionospheric Climate to Real-Time Weather Predictions[J]. Space Weather, 2017, 15(2): 418-429 doi: 10.1002/2016SW001593
  • Related Articles

    [1]Gan Wenxia, Pan Junjie, Geng Jing, Wang Huini, Hu Xiaodi. A Fusion Method for Infrared and Visible Images in All-weather Road Scenes[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20240173
    [2]SONG Zhina, SUI Haigang, LI Yongcheng. A Survey on Ship Detection Technology in High-Resolution Optical Remote Sensing Images[J]. Geomatics and Information Science of Wuhan University, 2021, 46(11): 1703-1715. DOI: 10.13203/j.whugis20200481
    [3]XIANG Tianzhu, GAO Rongrong, YAN Li, XU Zhenliang. Region Feature Based Multi-scale Fusion Method for Thermal Infrared and Visible Images[J]. Geomatics and Information Science of Wuhan University, 2017, 42(7): 911-917. DOI: 10.13203/j.whugis20141007
    [4]ZHANG Lifu, YANG Hang, FANG Conghui, PAN Mao. Thermal Infrared Target Recognition Using Multi-scale Fractal Model[J]. Geomatics and Information Science of Wuhan University, 2012, 37(3): 339-342.
    [5]YING Shen, LI Lin, GAO Yurong. Pedestrian Simulation in Urban Space Based on Visibility Analysis and Agent Techniques[J]. Geomatics and Information Science of Wuhan University, 2011, 36(11): 1367-1370.
    [6]XU Hanqiu, ZHANG Tiejun, LI Chunhua. Cross Comparison of Thermal Infrared Data Between ASTER and Landsat ETM~+ Sensors[J]. Geomatics and Information Science of Wuhan University, 2011, 36(8): 936-940.
    [7]ZHU Zhongmin, GONG Wei, YU Juan, TIAN Liqiao. Applicability Analysis of Transformation Models for Aerosol Optical Depth and Horizontal Visibility[J]. Geomatics and Information Science of Wuhan University, 2010, 35(9): 1086-1090.
    [8]MAO Yue, SONG Xiaoyong, FENG Laiping. Visibility Analysis of X-ray Pulsar Navigation[J]. Geomatics and Information Science of Wuhan University, 2009, 34(2): 222-225.
    [9]YANG Guijun, LIU Qinhuo, LIU Qiang, GU Xingfa. Fusion of Visible and Thermal Infrared Remote Sensing Data Based on GA-SOFM Neural Network[J]. Geomatics and Information Science of Wuhan University, 2007, 32(9): 786-790.
    [10]GONG Shengrong, YANG Shanchao. A Visible Watermarking Algorithm Holding Image Content[J]. Geomatics and Information Science of Wuhan University, 2006, 31(9): 757-760.
  • Cited by

    Periodical cited type(2)

    1. 徐辛超,高阳. 融合跳跃连接网络与双重注意力机制的可见光与红外遥感影像匹配方法. 地球信息科学学报. 2025(03): 766-783 .
    2. 姚国标,张成成,龚健雅,张现军,李兵. 非线性尺度空间改进的光学与SAR影像自动配准. 武汉大学学报(信息科学版). 2024(12): 2249-2260 .

    Other cited types(0)

Catalog

    Article views PDF downloads Cited by(2)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return