LI Jinghan, GONG Xianyong, WU Fang, HUANG Bohua. An Improved Model for Calculating the Similarity of Spatial Direction Relations Between Areal Objects[J]. Geomatics and Information Science of Wuhan University, 2016, 41(7): 925-931,951. DOI: 10.13203/j.whugis20140341
Citation: LI Jinghan, GONG Xianyong, WU Fang, HUANG Bohua. An Improved Model for Calculating the Similarity of Spatial Direction Relations Between Areal Objects[J]. Geomatics and Information Science of Wuhan University, 2016, 41(7): 925-931,951. DOI: 10.13203/j.whugis20140341

An Improved Model for Calculating the Similarity of Spatial Direction Relations Between Areal Objects

Funds: 

The National Natural Science Foundation of China Nos. 41171354

The Open Research Fund Program of State Key Laboratory of Geo-information Engineering No. SKLGIE2013-M-4-6

More Information
  • Corresponding author:

    WU Fang, PhD, professor. wufang_630@126.com

  • Received Date: June 11, 2014
  • Published Date: July 04, 2016
  • As an important aspect of spatial relation similarity, directional similarity is widely used in pattern recognition, spatial query, spatial data match, quality assess of cartographic generalization and consistency checking of multi-resolution spatial data. Therefore, calculation of directional similarity is necessary. Now,the influential calculating model of directional similarity is proposed by Goyal, which based on the direction-relation matrixand derive the similarity value by calculating the least cost for transforming one direction-relation matrix into another. However, the current model is complex and the calculating result is inconsistent with the recognition of people.To overcome the limitations of the model given by Goyal, an improved model for calculating the similarity of spatial direction relations between areal objects is proposed. The new model improves the model given by Goyal in three ways: Firstly, the direction-relation matrix model for calculating the spatial direction relations between simple areal objects is extended to accommodate the calculation of the spatial direction relations between areal object groups. Secondly, the definition of direction relation distance between single-element direction-relation matrices is improved according to cognitive knowledge of direction relation difference. Finally, a new method based on the minimum element to calculate the distance between two multi-element direction-relation matrices is presented, which simplifies the process of calculation. Two experiments are performed to validate the effectiveness of the proposed model. One experiment is recognition experiment by comparing the calculating results with the recognition results. The second experiment is an application experiment of the improved model. Experiments illustrate that the similarity result between two spatial direction relations calculated by the proposed model is consistent with the human recognition of directional relation differences. It is simple and feasible for applications.
  • [1]
    Shepard R N. Toward a Universal Law of Generalization for Psychological Science[J].Science,1987,237(4 820):1 317-1 323
    [2]
    Li Bonan, Fonseca F T. TDD-A Comprehensive Model for Qualitative Spatial Similarity Assessment[J].Spatial Cognition and Computation,2006, 6(1):31-62
    [3]
    郝艳玲,唐文静,赵玉新,等.基于空间相似性的面实体匹配算法研究[J].测绘学报,2008,37(4):501-506

    Hao Yanling, Tang Wenjing, Zhao Yuxin, et al. Areal Feature Matching Algorithm Based on Spatial Similarity[J]. Acta Geodaetica et Cartographica Sinica, 2008, 37(4): 501-506
    [4]
    巩现勇,武芳,钱海忠,等.建筑群多连通直线模式的参数识别方法[J].武汉大学学报·信息科学版, 2014, 39(3): 335-339

    Gong Xianyong, Wu Fang, Qian Haizhong, et al. The Parameter Discrimination Approach to Multi-connected Linear Pattern Recognition in Building Groups[J]. Geomatics and Information Science of Wuhan University, 2014, 39(3): 335-339
    [5]
    Nedas K A,Egnerhofer M J. Spatial-Scene Similarity Queries[J]. Transactions in GIS, 2008,12(6):661-681
    [6]
    郭黎,崔铁军,郑海鹰,等.基于空间方向相似性的面状空间矢量数据匹配算法[J].测绘科学技术学报,2008,25(5): 380-382

    Guo Li, Cui Tiejun, Zheng Haiying,et al. Arithmetic for Area Vector Spatial Data Matching on Spatial Direction Similarity[J]. Journal of Geomatics Science and Technology, 2008, 25(5):380-382
    [7]
    许俊奎,武芳,钱海忠,等.一种空间关系相似性约束的居民地匹配算法[J]. 武汉大学学报·信息科学版,2013, 38(4): 484-488

    Xu Junkui, Wu Fang, Qian Haizhong,et al. Settlement Matching Algorithm Using Spatial Similarity Relations as Constraints[J]. Geomatics and Information Science of Wuhan University, 2013, 38(4): 484-488
    [8]
    刘涛,杜清运,毛海辰.空间线群目标相似度计算模型研究[J]. 武汉大学学报·信息科学版,2012, 37(8): 992-995

    Liu Tao, Du Qingyun, Mao Haichen. Spatial Similarity Assessment Model and Its Application in Line Groups[J]. Geomatics and Information Science of Wuhan University, 2012, 37(8): 992-995
    [9]
    Goyal R K. Similarity Assessment for Cardinal Directions Between Extended Spatial Objects[D]. Maine:University of Maine,2000
    [10]
    郭庆胜,丁虹.基于栅格数据的面状目标空间方向相似性研究[J].武汉大学学报·信息科学版,2004, 29(5): 447-450

    Guo Qingsheng, Ding Hong. Similarity for Spatial Directions Between Areal Objects in Raster Data[J].Geomatics and Information Science of Wuhan University, 2004, 29(5): 447-450
    [11]
    安晓亚. 空间数据几何相似性度量理论方法与应用研究[D].郑州:信息工程大学,2011

    An Xiaoya. Research on Theory, Methods and Applications of Geometry Similarity Measurement for Spatial Data[D]. Zhengzhou:Information Engineering University, 2011
    [12]
    闫浩文,郭仁忠.空间方向关系基础性问题研究[J].测绘学报,2002,31(4):357-360

    Yan Haowen, Guo Renzhong. On Fundamental Problems of Directional Relationships[J]. Acta Geodaetica et Cartographica Sinica, 2002,31(4):357-360
    [13]
    Goyal R K,Egenhofer M. Cardinal Directions Between Extended Spatial Objects[C]. IEEE Transaction on Knowledge and Data Engineering, Greenwich, U K, 2000
    [14]
    Yan H W,Chu Y D,Li Z L,et al. A Quantitative Description Model for Direction Relations Based on Direction Groups[J]. Geoinformatica ,2006,10: 177-196
    [15]
    闫浩文,郭仁忠.基于Voronoi图的空间方向关系形式化描述模型[J]. 武汉大学学报·信息科学版,2003,28(4):468-471

    Yan Haowen, Guo Renzhong. A Formal Description Modelof Directional Relationships Based on Voronoi Diagram[J]. Geomatics and Information Science of Wuhan University, 2003,28(4):468-471
    [16]
    王中辉,闫浩文.基于方向Voronoi图模型的群组目标空间方向关系计算[J].武汉大学学报·信息科学版,2013, 38(5): 584-588)

    Wang Zhonghui, Yan Haowen. Computation of Direction Relations Between Object Groups Based on Direction Voronoi Diagram Model[J]. Geomatics and Information Science of Wuhan University, 2013, 38(5): 584-588
  • Related Articles

    [1]ZHAO Binbin, XIE Jianxiang, ZHANG Hongkui, WANG Liwei, WANG Qian. Geographic Line Extraction Algorithm Based on Morphing Transformation Techniques[J]. Geomatics and Information Science of Wuhan University, 2025, 50(1): 174-183. DOI: 10.13203/j.whugis20220493
    [2]WANG Pengxin, CHEN Chi, ZHANG Yue, ZHANG Shuyu, LIU Junming. Estimation of Winter Wheat Yield Using Assimilated Bi-variables and PCA-Copula Method[J]. Geomatics and Information Science of Wuhan University, 2022, 47(8): 1201-1212. DOI: 10.13203/j.whugis20220038
    [3]XIE Yanxin, WU Xiaocheng, HU Xiong. Using One-Dimensional Variational Assimilation Algorithm to Obtain Atmospheric Refractive Index from Ground-Based GPS Phase Delay[J]. Geomatics and Information Science of Wuhan University, 2018, 43(7): 1042-1047. DOI: 10.13203/j.whugis20160238
    [4]LI Jingzhong, ZHANG Jinming. A Morphing Method for Smooth Area Features Based on Fourier Transform[J]. Geomatics and Information Science of Wuhan University, 2017, 42(8): 1104-1109. DOI: 10.13203/j.whugis20150157
    [5]OU Ming, ZHEN Weimin, XU Jisheng, YU Xiao, LIU Yiwen, LIU Dun. Regional Ionospheric TEC Reconstruction by Data Assimilation Technique[J]. Geomatics and Information Science of Wuhan University, 2017, 42(8): 1075-1081. DOI: 10.13203/j.whugis20150297
    [6]WANG Hongwei, HUANG Chunlin, HOU Jinliang, LI Xiaoying. Estimation of Snow Depth from Multi-source Data Fusion Based on Data Assimilation Algorithm[J]. Geomatics and Information Science of Wuhan University, 2016, 41(6): 848-852. DOI: 10.13203/j.whugis20140568
    [7]SONG Fucheng, SHI Shuangshuang, FENG Jiandi. Construction of Ionospheric TEC Assimilation Model Based on Chapman Function[J]. Geomatics and Information Science of Wuhan University, 2016, 41(6): 784-790. DOI: 10.13203/j.whugis20150101
    [8]ZHANG Xianfeng, ZHAO Jiepeng. System for Soil Moisture Retrieval and Data Assimilation from Remotely Sensed Data in Arid Regions[J]. Geomatics and Information Science of Wuhan University, 2012, 37(7): 794-799.
    [9]WU Mingguang, LUE Guonian, CHEN Taisheng. Data Structure Assimilation of Marker Symbol[J]. Geomatics and Information Science of Wuhan University, 2011, 36(2): 239-243.
    [10]CHEN Rongyuan, LIU Guoying, WANG Leiguang, QIN Qianqing. Fusion Algorithm of Multispectral and Panchromatic Images Based on the Data Assimilation[J]. Geomatics and Information Science of Wuhan University, 2009, 34(8): 919-923.
  • Cited by

    Periodical cited type(13)

    1. 杨忠荣. 低成本车载RTK高精度定位方法. 地理空间信息. 2025(03): 96-100 .
    2. 程建华,陈思成,臧楠,程思翔,赵国晶,马子凡. 附加自适应短时高程变化率约束的PPP/INS紧组合增强模型. 测绘学报. 2024(09): 1761-1776 .
    3. 王勋,崔先强,高天杭. 动力学模型自适应滤波算法研究. 武汉大学学报(信息科学版). 2023(05): 741-748 .
    4. 张一,尹潇,宋海娜. 运动方向约束的自适应SRUKF目标跟踪算法. 导航定位学报. 2023(05): 53-59 .
    5. 李清泉,吕世望,陈智鹏,殷煜,张德津. 冬奥会国家速滑馆超大地坪平整度快速测量. 武汉大学学报(信息科学版). 2022(03): 325-333 .
    6. 辜声峰,戴春齐,何成鹏,方礼喆,王梓豪. 面向城市车载导航的多系统PPP-RTK/VIO半紧组合算法性能分析. 武汉大学学报(信息科学版). 2021(12): 1852-1861 .
    7. 陶晓晓,卢小平,路泽忠,周雨石,余振宝. WiFi融合环境光定位方法研究. 测绘科学. 2020(06): 57-61+72 .
    8. 张辰东,王兆瑞. 一种长隧道内高速列车实时高精度定位方法. 计算机仿真. 2020(09): 124-128+188 .
    9. 尹潇,柴洪洲,向民志,杜祯强. 附加运动学约束的BDS抗差UKF导航算法. 测绘学报. 2020(11): 1399-1406 .
    10. 王诒国,潘孝星. 基于马氏距离的抗差卡尔曼滤波算法在组合导航中的应用. 北京测绘. 2020(12): 1810-1814 .
    11. 吕大千,曾芳玲,欧阳晓凤,于合理. 时频传递的改进整数相位钟方法. 测绘学报. 2019(07): 889-897 .
    12. 邓中亮,尹露,唐诗浩,刘延旭,宋汶轩. 室内定位关键技术综述. 导航定位与授时. 2018(03): 14-23 .
    13. 张迪,施昆,李照永. 移动测量系统的GNSS/INS组合定位方法的对比研究. 软件. 2018(08): 110-116 .

    Other cited types(18)

Catalog

    Article views (1370) PDF downloads (293) Cited by(31)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return