ZHAO Binbin, PENG Dongliang, ZHANG Shanshan, LIU Shangshang, XIONG Xuping, DAI Quanfa. An Assimilation Method of Inconsistency Between Area Objects at Different Scales with Respect to Spatial Relation Constraints[J]. Geomatics and Information Science of Wuhan University, 2016, 41(7): 911-917. DOI: 10.13203/j.whugis20140011
Citation: ZHAO Binbin, PENG Dongliang, ZHANG Shanshan, LIU Shangshang, XIONG Xuping, DAI Quanfa. An Assimilation Method of Inconsistency Between Area Objects at Different Scales with Respect to Spatial Relation Constraints[J]. Geomatics and Information Science of Wuhan University, 2016, 41(7): 911-917. DOI: 10.13203/j.whugis20140011

An Assimilation Method of Inconsistency Between Area Objects at Different Scales with Respect to Spatial Relation Constraints

Funds: 

The National Natural Science Foundation of China No. 41301404

the Hunan Provincial Natural Science Foundation of China No. 14JJ3083

the Scientific Research Foundation for NASG Key Laboratory of Land Environment and Disaster Monitoring No. LEDM2012B02

More Information
  • Received Date: December 11, 2014
  • Published Date: July 04, 2016
  • Consistency is a basic indicator of spatial data quality assessment. As an opposite of consistency, inconsistency of spatial data refers to the conflicts or contradictions between spatial objects at the same scale or different scales. Spatial data inconsistency is a common concern in the international geographical information community since 1990's, and will have a direct effect on spatial data integration, cartographic generalization and spatial data updating. Previous studies mainly focus on handling inconsistencies between line objects with the same scale. Less attention is paid to the problem of handling inconsistencies between objects from maps with different scales or related issues about “a building dropped in a river” in the process of cartographic generalization while deriving a smaller scale map from a larger scale map. Hence, this paper proposes an approach based on data assimilation principles for handling inconsistency between rivers and buildings. The proposed method first extracts boundaries of both rivers at different scales by means of spatial operations (e.g. split, intersection). Then, morphing transformations are performed from a larger-scale river boundary to the other one. Finally, with respect to topological and distance constraints between river boundary and a building, an optimal assimilated river boundary is determined. Experiments demonstrate that the proposed method is able to handle inconsistency between generalized river and buildings at a larger-scale effectively, providing a promising solution for eliminating topological conflicts while deriving consistently a smaller-scale map from a larger-scale map.
  • [1]
    Kainz W. Logical Consistency[J]. Elements of Spatial Data Quality, 1991(5): 109-137
    [2]
    Rodríguez M A. Inconsistency Issues in Spatial Databases[J]. Inconsisteney Tolerance Lecture Notes in Computer Science, 2005, 3 300: 237-269
    [3]
    简灿良, 赵彬彬, 邓敏, 等. 地理空间数据不一致性探测处理方法研究[J]. 计算机工程与应用, 2013, 49(10): 150-155

    Jian Canliang, Zhao Binbin, Deng Min, et al. Detailed Review on Geo-spatial Data Inconsistency Detecting and Handling[J]. Computer Engineering and Application, 2013, 49(10): 150-155
    [4]
    Kang H K, Li K J. Assessing Topological Consistency for Collapse Operation in Generalization of Spatial Databases[J]. Lecture Notes in Computer Science, 2005, 3770, 249-258
    [5]
    Chen Jun, Liu Wei, Li Zhilin, et al. Detection of Spatial Conflicts Between Rivers and Contours in Digital Map Updating[J]. International Journal of Geographical Information Science, 2007, 21(10): 1093-1 114
    [6]
    Du Shihong, Qin Qimin, Wang Qiao, et al. Evaluating Structural and Topological Consistency of Complex Regions with Broad Boundaries in Multi-resolution Spatial Databases[J]. Information Sciences, 2008, 178(1): 52-68
    [7]
    Brisaboa N R, Luaces M R, Rodríguez M A, et al. An Inconsistency Measure of Spatial Data Sets with Respect to Topological Constraints[J]. International Journal of Geographical Information Science, 2014, 28(1): 56-82
    [8]
    Li Deren, Zhang J X, Wu Huayi. Spatial Data Quality and Beyond[J]. International Journal of Geographical Information Science, 2012, 26(12): 2277-2 290
    [9]
    Rabier F. Overview of Global Data Assimilation Developments in Numerical Weather-prediction Centres[J]. Quarterly Journal of the Royal Meteorological Society, 2005, 131: 3215-3 233
    [10]
    Mclaughlin D. Recent Development in Hydrologic Data Assimilation[J]. Reviews of Geophysics, 1995(supp): 977-984
    [11]
    陈荣元, 刘国英, 王雷光, 等. 基于数据同化的全色和多光谱遥感影像融合[J]. 武汉大学学报·信息科学版, 2009, 34(8): 919-922

    Chen Rongyuan, Liu Guoying, Wang Leiguang, et al. Fusion Algorithm of Multispectral and Panchromatic Images Based on the Data Assimilation[J]. Geomatics and Information Science of Wuhan University, 2009, 34(8): 919-922
    [12]
    安晓亚, 孙群, 张小明, 等. 多源地理空间数据同化的主动更新与应用分析[J]. 地球信息科学学报, 2010, 12(4): 541-548)

    An Xiaoya, Sun Chun, Zhang Xiaoming, et al. Actively Updating and Application Analysis of Multi-Geospatial Data Assimilation[J]. Journal of Geo-Information Science, 2010, 12(4): 541-548
    [13]
    Li Xia, Zhang Yihan, Liu Xiaoping, et al. Assimilating Process Context Information of Cellular Automata into Change Detection for Monitoring Land Use Changes[J]. International Journal of Geographical Information Science, 2012, 26(9): 1667-1 687
    [14]
    李新, 黄春林. 数据同化: 一种集成多源地理空间数据的新思路[J]. 科技导报, 2004, 25(12): 13-16)

    Li Xin, Huang Chunlin. Data Assimilation: A New Means for Multi-source Geospatial Data Integration[J]. Science and Technology Review, 2004, 25(12): 13-16
    [15]
    王跃山. 数据同化——它的缘起、含义和主要方法[J]. 海洋预报, 1999, 18(1): 11-20

    Wang Yueshan. Data Assimilation—Its Cause, Its Meaning and Main Procedures[J]. Marine Forecasts, 1999, 18(1): 11-20
    [16]
    Li Zhilin, Wong Meiling. Animating Basic Operations for Digital Map Generalization with Morphing Techniques[J]. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Science, 2008, (B2): 637-642
    [17]
    彭东亮, 邓敏, 赵彬彬. 河网多尺度Morphing的变换方法研究[J]. 遥感学报, 2012, 16(5): 953-968

    Peng Dongliang, Deng Min, Zhao Binbin. Multi-scale Transformation of River Networks Based on Morphing Technology [J]. Journal of Remote Sensing, 2012, 16(5): 953-968
    [18]
    Wolberg G. Image Morphing: A Survey[J]. The Visual Computer, 1998, 14: 360-372
    [19]
    中华人民共和国国家质量监督检验检疫总局. GB/T 12343.1—2008 国家基本比例尺地图编绘规范第1部分:1:25 000 1:50 000 1:100 000地形图编绘规范[S]. 北京: 中国标准出版社,2008

    State Bureau of Surveying and Mapping. GB/T 12343.1—2008. Compilation Specifications for National Fundamental Scale Maps—Part 1: Compilation Specification for 1:25 000 1:50 000 1:100 000 Topographic Maps[S]. Beijing: China Standard Press,2008
    [20]
    中华人民共和国国家质量监督检验检疫总局. GB/T 20257.2—2006. 国家基本比例尺地形图图式第2部分:1:5000 1:10000地形图图式[S]. 北京: 中国标准出版社,2006

    State Bureau of Surveying and Mapping. GB/T 20257.2—2006. Cartographic Symbols for National Fundamental Scale Maps--Part 2: Specifications for Cartographic Symbols 1:5000 1:10000 Topographic Maps[S]. Beijing: China Standard Press,2006
    [21]
    艾廷华, 毋河海. 相邻多边形共享边界的一致化改正[J]. 武汉测绘科技大学学报, 2000, 25(5): 426-431

    Ai Tinghua, Wu Hehai. Consistency Correction of Shared Boundary Between Adjacent Polygons[J]. Journal of Wuhan Technical University of Surveying and Mapping, 2000, 25(5): 426-431
  • Related Articles

    [1]ZHAO Binbin, XIE Jianxiang, ZHANG Hongkui, WANG Liwei, WANG Qian. Geographic Line Extraction Algorithm Based on Morphing Transformation Techniques[J]. Geomatics and Information Science of Wuhan University, 2025, 50(1): 174-183. DOI: 10.13203/j.whugis20220493
    [2]WANG Pengxin, CHEN Chi, ZHANG Yue, ZHANG Shuyu, LIU Junming. Estimation of Winter Wheat Yield Using Assimilated Bi-variables and PCA-Copula Method[J]. Geomatics and Information Science of Wuhan University, 2022, 47(8): 1201-1212. DOI: 10.13203/j.whugis20220038
    [3]XIE Yanxin, WU Xiaocheng, HU Xiong. Using One-Dimensional Variational Assimilation Algorithm to Obtain Atmospheric Refractive Index from Ground-Based GPS Phase Delay[J]. Geomatics and Information Science of Wuhan University, 2018, 43(7): 1042-1047. DOI: 10.13203/j.whugis20160238
    [4]LI Jingzhong, ZHANG Jinming. A Morphing Method for Smooth Area Features Based on Fourier Transform[J]. Geomatics and Information Science of Wuhan University, 2017, 42(8): 1104-1109. DOI: 10.13203/j.whugis20150157
    [5]OU Ming, ZHEN Weimin, XU Jisheng, YU Xiao, LIU Yiwen, LIU Dun. Regional Ionospheric TEC Reconstruction by Data Assimilation Technique[J]. Geomatics and Information Science of Wuhan University, 2017, 42(8): 1075-1081. DOI: 10.13203/j.whugis20150297
    [6]WANG Hongwei, HUANG Chunlin, HOU Jinliang, LI Xiaoying. Estimation of Snow Depth from Multi-source Data Fusion Based on Data Assimilation Algorithm[J]. Geomatics and Information Science of Wuhan University, 2016, 41(6): 848-852. DOI: 10.13203/j.whugis20140568
    [7]SONG Fucheng, SHI Shuangshuang, FENG Jiandi. Construction of Ionospheric TEC Assimilation Model Based on Chapman Function[J]. Geomatics and Information Science of Wuhan University, 2016, 41(6): 784-790. DOI: 10.13203/j.whugis20150101
    [8]ZHANG Xianfeng, ZHAO Jiepeng. System for Soil Moisture Retrieval and Data Assimilation from Remotely Sensed Data in Arid Regions[J]. Geomatics and Information Science of Wuhan University, 2012, 37(7): 794-799.
    [9]WU Mingguang, LUE Guonian, CHEN Taisheng. Data Structure Assimilation of Marker Symbol[J]. Geomatics and Information Science of Wuhan University, 2011, 36(2): 239-243.
    [10]CHEN Rongyuan, LIU Guoying, WANG Leiguang, QIN Qianqing. Fusion Algorithm of Multispectral and Panchromatic Images Based on the Data Assimilation[J]. Geomatics and Information Science of Wuhan University, 2009, 34(8): 919-923.
  • Cited by

    Periodical cited type(13)

    1. 杨忠荣. 低成本车载RTK高精度定位方法. 地理空间信息. 2025(03): 96-100 .
    2. 程建华,陈思成,臧楠,程思翔,赵国晶,马子凡. 附加自适应短时高程变化率约束的PPP/INS紧组合增强模型. 测绘学报. 2024(09): 1761-1776 .
    3. 王勋,崔先强,高天杭. 动力学模型自适应滤波算法研究. 武汉大学学报(信息科学版). 2023(05): 741-748 .
    4. 张一,尹潇,宋海娜. 运动方向约束的自适应SRUKF目标跟踪算法. 导航定位学报. 2023(05): 53-59 .
    5. 李清泉,吕世望,陈智鹏,殷煜,张德津. 冬奥会国家速滑馆超大地坪平整度快速测量. 武汉大学学报(信息科学版). 2022(03): 325-333 .
    6. 辜声峰,戴春齐,何成鹏,方礼喆,王梓豪. 面向城市车载导航的多系统PPP-RTK/VIO半紧组合算法性能分析. 武汉大学学报(信息科学版). 2021(12): 1852-1861 .
    7. 陶晓晓,卢小平,路泽忠,周雨石,余振宝. WiFi融合环境光定位方法研究. 测绘科学. 2020(06): 57-61+72 .
    8. 张辰东,王兆瑞. 一种长隧道内高速列车实时高精度定位方法. 计算机仿真. 2020(09): 124-128+188 .
    9. 尹潇,柴洪洲,向民志,杜祯强. 附加运动学约束的BDS抗差UKF导航算法. 测绘学报. 2020(11): 1399-1406 .
    10. 王诒国,潘孝星. 基于马氏距离的抗差卡尔曼滤波算法在组合导航中的应用. 北京测绘. 2020(12): 1810-1814 .
    11. 吕大千,曾芳玲,欧阳晓凤,于合理. 时频传递的改进整数相位钟方法. 测绘学报. 2019(07): 889-897 .
    12. 邓中亮,尹露,唐诗浩,刘延旭,宋汶轩. 室内定位关键技术综述. 导航定位与授时. 2018(03): 14-23 .
    13. 张迪,施昆,李照永. 移动测量系统的GNSS/INS组合定位方法的对比研究. 软件. 2018(08): 110-116 .

    Other cited types(18)

Catalog

    Article views (1344) PDF downloads (442) Cited by(31)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return