LIU Shanwei, LIANG Chengjia, WAN Wei, ZHANG Jie, MA Wang. A New GNSS-IR Method to Monitor Permafrost Freeze-Thaw Deformation Considering the Terrain Effect[J]. Geomatics and Information Science of Wuhan University, 2024, 49(1): 77-89. DOI: 10.13203/j.whugis20230460
Citation: LIU Shanwei, LIANG Chengjia, WAN Wei, ZHANG Jie, MA Wang. A New GNSS-IR Method to Monitor Permafrost Freeze-Thaw Deformation Considering the Terrain Effect[J]. Geomatics and Information Science of Wuhan University, 2024, 49(1): 77-89. DOI: 10.13203/j.whugis20230460

A New GNSS-IR Method to Monitor Permafrost Freeze-Thaw Deformation Considering the Terrain Effect

More Information
  • Received Date: November 28, 2023
  • Available Online: December 28, 2023
  • Objectives 

    The seasonal subsidence and uplift of the surface elevation in permafrost area occur due to the annual melting and freezing of active layer, which has an important impact on the safety of engineering construction, the balance of ecological environment, and global climate change. Using global navigation satellite system-interferometric reflectometry (GNSS-IR) to monitor frozen soil deformation is a new technique. Aiming at the terrain influence caused by the non-daily-repeatable orbits of GLONASS and Galileo satellites, this paper proposes a new method to calculate the freeze-thaw deformation of permafrost using these GNSS data.

    Methods 

    By introducing the inclination angle of reflector surface, the effects of terrain changes are eliminated, and the seasonal freeze-thaw deformation closer to the actual situation is obtained. The GNSS signal-to-noise ratio data of 2018 and 2019 snow-free days at SG27 site in northern Alaska are used for experiments and compared with the results obtained by existing retrieval methods to verify the effectiveness of this method in monitoring permafrost deformation.

    Results 

    The results show that compared with the methods without considering the terrain effect, the surface elevation changes obtained by GLONASS and Galileo have smaller discreteness and smaller uncertainty, and the fitting consistency and determination coefficient R2 of the composite model have been improved. The total average standard deviations are reduced by about 28.9 % and 36.9 %, and the total average R2 are increased by about 0.23 and 0.24, respectively. The total average increases of daily data utilization rate of non-repetitive orbits are about 19.6 % and 22.8 %.

    Conclusions 

    This study provides a valuable reference for monitoring permafrost freeze-thaw deformation, and expands the application of GNSS-IR in GNSS system for permafrost freeze-thaw monitoring.

  • [1]
    Biskaborn B K, Smith S L, Noetzli J, et al. Permafrost is Warming at a Global Scale[J]. Nature Communications, 2019, 10: 264.
    [2]
    Smith M W. Observations of Soil Freezing and Frost Heave at Inuvik, Northwest Territories, Canada[J]. Canadian Journal of Earth Sciences, 1985, 22(2): 283-290.
    [3]
    MackayJ R, LeslieR V. A Simple Probe for the Measurement of Frost Heave Within Frozen Ground in a Permafrost Environment[R].Ottawa,Canada:Geological Survey of Canada,1987.
    [4]
    MacKay J R. Downward Water Movement into Frozen Ground, Western Arctic Coast, Canada[J]. Canadian Journal of Earth Sciences, 1983, 20(1): 120-134.
    [5]
    Ross M J, Burn C R. The First 20 Years (1978-1979 to 1998-1999) of Active-layer Development, Illisarvik Experimental Drained Lake Site, Western Arctic Coast, Canada [J]. Canadian Journal of Earth Sciences, 2002, 39(11): 1657-1674.
    [6]
    Little J D, Sandall H, Walegur M T, et al. Application of Differential Global Positioning Systems to Monitor Frost Heave and Thaw Settlement in Tundra Environments[J]. Permafrost and Periglacial Processes, 2003, 14(4): 349-357.
    [7]
    Shiklomanov N I, Streletskiy D A, Little J D, et al. Isotropic Thaw Subsidence in Undisturbed Permafrost Landscapes[J]. Geophysical Research Letters, 2013, 40(24): 6356-6361.
    [8]
    Streletskiy D A, Shiklomanov N I, Little J D, et al. Thaw Subsidence in Undisturbed Tundra Landscapes, Barrow, Alaska, 1962–2015[J]. Permafrost and Periglacial Processes, 2017, 28(3): 566-572.
    [9]
    Liu L, Zhang T J, Wahr J. InSAR Measurements of Surface Deformation over Permafrost on the North Slope of Alaska[J]. Journal of Geophysical Research: Earth Surface, 2010, 115(F3): F03023.
    [10]
    Liu L, Schaefer K, Gusmeroli A, et al. Seasonal Thaw Settlement at Drained Thermokarst Lake Basins, Arctic Alaska[J]. The Cryosphere, 2014, 8(3): 815-826.
    [11]
    Liu L, Schaefer K M, Chen A C, et al. Remote Sensing Measurements of Thermokarst Subsidence Using InSAR[J]. Journal of Geophysical Research: Earth Surface, 2015, 120(9): 1935-1948.
    [12]
    Short N, Brisco B, Couture N, et al. A Comparison of TerraSAR-X, RADARSAT-2 and ALOS-PALSAR Interferometry for Monitoring Permafrost Environments, Case Study from Herschel Island, Canada[J]. Remote Sensing of Environment, 2011, 115(12): 3491-3506.
    [13]
    Daout S, Doin M P, Peltzer G, et al. Large-Scale InSAR Monitoring of Permafrost Freeze-Thaw Cycles on the Tibetan Plateau[J]. Geophysical Research Letters, 2017, 44(2): 901-909.
    [14]
    Zwieback S, Kokelj S V, Günther F, et al. Sub-seasonal Thaw Slump Mass Wasting is not Consistently Energy Limited at the Landscape Scale[J]. The Cryosphere, 2018, 12(2): 549-564.
    [15]
    Lantuit H, Pollard W H. Temporal Stereophotogrammetric Analysis of Retrogressive Thaw Slumps on Herschel Island, Yukon Territory[J]. Natural Hazards and Earth System Sciences, 2005, 5(3): 413-423.
    [16]
    Jones B M, Stoker J M, Gibbs A E, et al. Quantifying Landscape Change in an Arctic Coastal Lowland Using Repeat Airborne LiDAR[J]. Environmental Research Letters, 2013, 8(4): 045025.
    [17]
    Jones B M, Grosse G, Arp C D, et al. Recent Arctic Tundra Fire Initiates Widespread Thermokarst Development[J]. Scientific Reports, 2015, 5: 15865.
    [18]
    Günther F, Overduin P P, Yakshina I A, et al. Observing Muostakh Disappear: Permafrost Thaw Subsidence and Erosion of a Ground-Ice-Rich Island in Response to Arctic Summer Warming and Sea Ice Reduction[J]. The Cryosphere, 2015, 9(1): 151-178.
    [19]
    李方州. 基于GNSS-IR的地表目标参数测量研究[D]. 杭州: 杭州电子科技大学, 2022.

    LiFangzhou. Research on Surface Parameter Measurement Based on GNSS-IR[D]. Hangzhou: Hangzhou Dianzi University, 2022.
    [20]
    张双成, 戴凯阳, 南阳, 等. GNSS-MR技术用于雪深探测的初步研究[J]. 武汉大学学报(信息科学版), 2018, 43(2): 234-240.

    Zhang Shuangcheng, Dai Kaiyang, Yang Nan, et al. Preliminary Research on GNSS-MR for Snow Depth[J]. Geomatics and Information Science of Wuhan University, 2018, 43(2): 234-240.
    [21]
    李政. 基于GNSS-IR的积雪深度反演研究[D]. 西安: 西安科技大学, 2021.

    LiZheng. Research on Snow Depth Retrieval Based on GNSS-IR[D]. Xi'an: Xi'an University of Science and Technology, 2021.
    [22]
    Qian X D, Jin S G. Estimation of Snow Depth from GLONASS SNR and Phase-Based Multipath Reflectometry[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9(10): 4817-4823.
    [23]
    Tabibi S, Geremia-Nievinski F, van Dam T. Statistical Comparison and Combination of GPS, GLONASS, and Multi-GNSS Multipath Reflectometry Applied to Snow Depth Retrieval[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(7): 3773-3785.
    [24]
    Wang X L, He X F, Zhang Q. Evaluation and Combination of Quad-Constellation Multi-GNSS Multipath Reflectometry Applied to Sea Level Retrieval[J]. Remote Sensing of Environment, 2019, 231: 111229.
    [25]
    汉牟田, 张波, 杨东凯, 等. 利用GNSS干涉信号振荡幅度反演土壤湿度[J]. 测绘学报, 2016, 45(11): 1293-1300.

    Han Mutian, Zhang Bo, Yang Dongkai, et al. Soil Moisture Retrieval Utilizing GNSS Interference Signal Amplitude[J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(11): 1293-1300.
    [26]
    Guo Fei, Chen Weijie, Zhu Yifan, et al. A GNSS-IR Soil Moisture Inversion Method Integrating Phase, Amplitude and Frequency [J]. Geomatics and Information Science of Wuhan University, 2022, DOI: 10.13203/j.whugis20210644.(郭斐, 陈惟杰, 朱逸凡, 等. 一种融合相位、振幅与频率的GNSS-IR土壤湿度反演方法[J]. 武汉大学学报(信息科学版), 2022, DOI: 10.13203/j.whugis20210644.)
    [27]
    Chew C C, Small E E, Larson K M, et al. Vegetation Sensing Using GPS-Interferometric Reflectometry: Theoretical Effects of Canopy Parameters on Signal-to-Noise Ratio Data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(5): 2755-2764.
    [28]
    Liu L, Larson K M. Decadal Changes of Surface Elevation over Permafrost Area Estimated Using Reflected GPS Signals[J]. The Cryosphere, 2018, 12(2): 477-489.
    [29]
    Hu Y F, Liu L, Larson K M, et al. GPS Interferometric Reflectometry Reveals Cyclic Elevation Changes in Thaw and Freezing Seasons in a Permafrost Area (Barrow, Alaska)[J]. Geophysical Research Letters, 2018, 45(11): 5581-5589.
    [30]
    Zhang J H, Liu L, Hu Y F. Global Positioning System Interferometric Reflectometry (GPS-IR) Measurements of Ground Surface Elevation Changes in Permafrost Areas in Northern Canada[J]. The Cryosphere, 2020, 14(6): 1875-1888.
    [31]
    Zhang J H, Liu L, Su L, et al. Three in One: GPS-IR Measurements of Ground Surface Elevation Changes, Soil Moisture, and Snow Depth at a Permafrost Site in the Northeastern Qinghai–Tibet Plateau[J]. The Cryosphere, 2021, 15(6): 3021-3033.
    [32]
    Hu Y F, Wang J, Li Z H, et al. Ground Surface Elevation Changes over Permafrost Areas Revealed by Multiple GNSS Interferometric Reflectometry[J]. Journal of Geodesy, 2022, 96(8): 56.
    [33]
    Wan W, Zhao L M, Zhang J, et al. Toward Terrain Effects on GNSS Interferometric Reflectometry Snow Depth Retrievals: Geometries, Modeling, and Applications[J]. IEEE Transactions on Geoscience and Remote Sensing, 1809, 60: 4415514.
    [34]
    Larson K M. GPS Interferometric Reflectometry: Applications to Surface Soil Moisture, Snow Depth, and Vegetation Water Content in the Western United States[J]. WIREs Water, 2016, 3(6): 775-787.
    [35]
    BilichA L. Improving the Precision and Accuracy of Geodetic GPS: Applications to Multipath and Seismology[D].Boulder :University of Colorado, 2006.
    [36]
    Bilich A, Larson K M. Mapping the GPS Multipath Environment Using the Signal-to-Noise Ratio (SNR)[J]. Radio Science, 2007, 42(6): 2007RS003652.
  • Related Articles

    [1]ZHAO Binbin, XIE Jianxiang, ZHANG Hongkui, WANG Liwei, WANG Qian. Geographic Line Extraction Algorithm Based on Morphing Transformation Techniques[J]. Geomatics and Information Science of Wuhan University, 2025, 50(1): 174-183. DOI: 10.13203/j.whugis20220493
    [2]WANG Pengxin, CHEN Chi, ZHANG Yue, ZHANG Shuyu, LIU Junming. Estimation of Winter Wheat Yield Using Assimilated Bi-variables and PCA-Copula Method[J]. Geomatics and Information Science of Wuhan University, 2022, 47(8): 1201-1212. DOI: 10.13203/j.whugis20220038
    [3]XIE Yanxin, WU Xiaocheng, HU Xiong. Using One-Dimensional Variational Assimilation Algorithm to Obtain Atmospheric Refractive Index from Ground-Based GPS Phase Delay[J]. Geomatics and Information Science of Wuhan University, 2018, 43(7): 1042-1047. DOI: 10.13203/j.whugis20160238
    [4]LI Jingzhong, ZHANG Jinming. A Morphing Method for Smooth Area Features Based on Fourier Transform[J]. Geomatics and Information Science of Wuhan University, 2017, 42(8): 1104-1109. DOI: 10.13203/j.whugis20150157
    [5]OU Ming, ZHEN Weimin, XU Jisheng, YU Xiao, LIU Yiwen, LIU Dun. Regional Ionospheric TEC Reconstruction by Data Assimilation Technique[J]. Geomatics and Information Science of Wuhan University, 2017, 42(8): 1075-1081. DOI: 10.13203/j.whugis20150297
    [6]WANG Hongwei, HUANG Chunlin, HOU Jinliang, LI Xiaoying. Estimation of Snow Depth from Multi-source Data Fusion Based on Data Assimilation Algorithm[J]. Geomatics and Information Science of Wuhan University, 2016, 41(6): 848-852. DOI: 10.13203/j.whugis20140568
    [7]SONG Fucheng, SHI Shuangshuang, FENG Jiandi. Construction of Ionospheric TEC Assimilation Model Based on Chapman Function[J]. Geomatics and Information Science of Wuhan University, 2016, 41(6): 784-790. DOI: 10.13203/j.whugis20150101
    [8]ZHANG Xianfeng, ZHAO Jiepeng. System for Soil Moisture Retrieval and Data Assimilation from Remotely Sensed Data in Arid Regions[J]. Geomatics and Information Science of Wuhan University, 2012, 37(7): 794-799.
    [9]WU Mingguang, LUE Guonian, CHEN Taisheng. Data Structure Assimilation of Marker Symbol[J]. Geomatics and Information Science of Wuhan University, 2011, 36(2): 239-243.
    [10]CHEN Rongyuan, LIU Guoying, WANG Leiguang, QIN Qianqing. Fusion Algorithm of Multispectral and Panchromatic Images Based on the Data Assimilation[J]. Geomatics and Information Science of Wuhan University, 2009, 34(8): 919-923.
  • Cited by

    Periodical cited type(13)

    1. 杨忠荣. 低成本车载RTK高精度定位方法. 地理空间信息. 2025(03): 96-100 .
    2. 程建华,陈思成,臧楠,程思翔,赵国晶,马子凡. 附加自适应短时高程变化率约束的PPP/INS紧组合增强模型. 测绘学报. 2024(09): 1761-1776 .
    3. 王勋,崔先强,高天杭. 动力学模型自适应滤波算法研究. 武汉大学学报(信息科学版). 2023(05): 741-748 .
    4. 张一,尹潇,宋海娜. 运动方向约束的自适应SRUKF目标跟踪算法. 导航定位学报. 2023(05): 53-59 .
    5. 李清泉,吕世望,陈智鹏,殷煜,张德津. 冬奥会国家速滑馆超大地坪平整度快速测量. 武汉大学学报(信息科学版). 2022(03): 325-333 .
    6. 辜声峰,戴春齐,何成鹏,方礼喆,王梓豪. 面向城市车载导航的多系统PPP-RTK/VIO半紧组合算法性能分析. 武汉大学学报(信息科学版). 2021(12): 1852-1861 .
    7. 陶晓晓,卢小平,路泽忠,周雨石,余振宝. WiFi融合环境光定位方法研究. 测绘科学. 2020(06): 57-61+72 .
    8. 张辰东,王兆瑞. 一种长隧道内高速列车实时高精度定位方法. 计算机仿真. 2020(09): 124-128+188 .
    9. 尹潇,柴洪洲,向民志,杜祯强. 附加运动学约束的BDS抗差UKF导航算法. 测绘学报. 2020(11): 1399-1406 .
    10. 王诒国,潘孝星. 基于马氏距离的抗差卡尔曼滤波算法在组合导航中的应用. 北京测绘. 2020(12): 1810-1814 .
    11. 吕大千,曾芳玲,欧阳晓凤,于合理. 时频传递的改进整数相位钟方法. 测绘学报. 2019(07): 889-897 .
    12. 邓中亮,尹露,唐诗浩,刘延旭,宋汶轩. 室内定位关键技术综述. 导航定位与授时. 2018(03): 14-23 .
    13. 张迪,施昆,李照永. 移动测量系统的GNSS/INS组合定位方法的对比研究. 软件. 2018(08): 110-116 .

    Other cited types(18)

Catalog

    Article views PDF downloads Cited by(31)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return