XU Jingzhong, LI Jun. Optimal RANSAC Method for Segmentation of Complex Building Roof Planes[J]. Geomatics and Information Science of Wuhan University, 2023, 48(9): 1531-1537. DOI: 10.13203/j.whugis20210169
Citation: XU Jingzhong, LI Jun. Optimal RANSAC Method for Segmentation of Complex Building Roof Planes[J]. Geomatics and Information Science of Wuhan University, 2023, 48(9): 1531-1537. DOI: 10.13203/j.whugis20210169

Optimal RANSAC Method for Segmentation of Complex Building Roof Planes

More Information
  • Received Date: April 01, 2021
  • Available Online: October 20, 2022
  • Objectives 

    Aiming at the defects of the traditional random sample consensus (RANSAC) algorithm for complex roof segmentation, is paper proposes an optimal RANSAC method for segmentation of complex building roof planes.

    Methods 

    First, the normal vector of the point cloud is estimated based on the k-nearest neighbor of the point cloud, and the seed selection process is optimized by using the point normal equation to improve the effectiveness of the initial plane generation; Second, the weight function based on the point normal and its distance to the initial plane is used to suppress the false plane generation. And inner points of the plane are modified iteratively by the weight function to improve the correctness of the segmented plane. Finally, the patch competition method is used to optimize the segmentation results and achieve roof point cloud segmentation.

    Results 

    Segmentation experiments results of multiple groups of buildings show that the proposed method can effectively suppress false plane, and the precision, recall and overall accuracy of roof plane segmentation of complex buildings are 96.8%, 98.2% and 95.1% respectively.

    Conclusions 

    Compared with the traditional method, the proposed method has obvious advantages in the accuracy and time-consuming of point cloud segmentation results.

  • [1]
    Yu D, Ji S, Liu J, et al. Automatic 3D Building Reconstruction from Multi-view Aerial Images with Deep Learning[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2021, 171: 155-170. doi: 10.1016/j.isprsjprs.2020.11.011
    [2]
    黄荣刚, 杨必胜, 李健平, 等. 利用目标区域拓扑关系图提取建筑物点云[J]. 武汉大学学报(信息科学版), 2017, 42(4): 475-481.

    Huang Ronggang, Yang Bisheng, Li Jianping, et al. Building Points Detection from Airborne LiDAR Point Clouds Using Topological Relationship Graph Within Each Object Region[J]. Geomatics and Information Science of Wuhan University, 2017, 42(4): 475-481.
    [3]
    文学东, 陈为民, 谢洪, 等. 一种融合多源特征的建筑物三维模型重建方法[J]. 武汉大学学报(信息科学版), 2019, 44(5): 731-736. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201905014.htm

    Wen Xuedong, Chen Weimin, Xie Hong, et al. A Method for Building Model Reconstruction Based on Multi⁃source Feature Fusion[J]. Geomatics and Information Science of Wuhan University, 2019, 44(5): 731-736. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201905014.htm
    [4]
    Zhao C, Guo H T, Lu J, et al. A New Approach for Roof Segmentation from Airborne LiDAR Point Clouds[J]. Remote Sensing Letters, 2021, 12(4): 377-386. doi: 10.1080/2150704X.2020.1847348
    [5]
    Xu Y, Yao W, Hoegner L, et al. Segmentation of Building Roofs from Airborne LiDAR Point Clouds Using Robust Voxel-Based Region Growing[J]. Remote Sensing Letters, 2017, 8(11): 1062-1071. doi: 10.1080/2150704X.2017.1349961
    [6]
    赵瑞斌, 庞明勇, 张燕玲, 等. 机载LiDAR点云中精细建筑物顶面的渐进提取[J]. 计算机辅助设计与图形学学报, 2017, 29(4): 624-631.

    Zhao Ruibin, Pang Mingyong, Zhang Yanling, et al. Progressively Extracting Accurate Building Roofs from Airborne LiDAR Data[J]. Journal of Computer‐Aided Design & Computer Graphics, 2017, 29(4): 624-631.
    [7]
    Li Z, Shan J. RANSAC-Based Multi Primitive Building Reconstruction from 3D Point Clouds[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2022, 185: 247-260. doi: 10.1016/j.isprsjprs.2021.12.012
    [8]
    Wang X S, Chan T O, Liu K, et al. A Robust Segmentation Framework for Closely Packed Buildings from Airborne LiDAR Point Clouds[J]. International Journal of Remote Sensing, 2020, 41(14): 5147-5165. doi: 10.1080/01431161.2020.1727053
    [9]
    Albano R. Investigation on Roof Segmentation for 3D Building Reconstruction from Aerial LiDAR Point Clouds[J]. Applied Sciences, 2019, 9(21): 4674. doi: 10.3390/app9214674
    [10]
    Cao R J, Zhang Y J, Liu X Y, et al. Roof Plane Extraction from Airborne LiDAR Point Clouds[J]. International Journal of Remote Sensing, 2017, 38(12): 3684-3703. doi: 10.1080/01431161.2017.1302112
    [11]
    Demir N. Automated Detection of 3D Roof Planes from LiDAR Data[J]. Journal of the Indian Society of Remote Sensing, 2018, 46(8): 1265-1272. doi: 10.1007/s12524-018-0802-2
    [12]
    Dal P A P, Yano M S. Ransac-Based Segmentation for Building Roof Face Detection in LiDAR Point Cloud[C]// IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 2018.
    [13]
    Dehbi Y, Henn A, Gröger G, et al. Robust and Fast Reconstruction of Complex Roofs with Active Sampling from 3D Point Clouds[J]. Transactions in GIS, 2021, 25(1): 112-133. doi: 10.1111/tgis.12659
    [14]
    Yi Z, Wang H, Duan G, et al. An Airborne LiDAR Building-Extraction Method Based on the Naive Bayes-RANSAC Method for Proportional Segmentation of Quantitative Features[J]. Journal of the Indian Society of Remote Sensing, 2021, 49(2): 393-404. doi: 10.1007/s12524-020-01222-4
    [15]
    Canaz Sevgen S, Karsli F. An Improved RANSAC Algorithm for Extracting Roof Planes from Airborne Lidar Data[J]. The Photogrammetric Record, 2020, 35(169): 40-57. doi: 10.1111/phor.12296
    [16]
    Dey E K, Awrangjeb M, Stantic B. Outlier Detection and Robust Plane Fitting for Building Roof Extraction from LiDAR Data[J]. International Journal of Remote Sensing, 2020, 41(16): 6325-6354.
    [17]
    Xu B, Jiang W S, Shan J, et al. Investigation on the Weighted RANSAC Approaches for Building Roof Plane Segmentation from LiDAR Point Clouds[J]. Remote Sensing, 2015, 8(1): 5. doi: 10.3390/rs8010005
  • Related Articles

    [1]ZHAO Binbin, XIE Jianxiang, ZHANG Hongkui, WANG Liwei, WANG Qian. Geographic Line Extraction Algorithm Based on Morphing Transformation Techniques[J]. Geomatics and Information Science of Wuhan University, 2025, 50(1): 174-183. DOI: 10.13203/j.whugis20220493
    [2]WANG Pengxin, CHEN Chi, ZHANG Yue, ZHANG Shuyu, LIU Junming. Estimation of Winter Wheat Yield Using Assimilated Bi-variables and PCA-Copula Method[J]. Geomatics and Information Science of Wuhan University, 2022, 47(8): 1201-1212. DOI: 10.13203/j.whugis20220038
    [3]XIE Yanxin, WU Xiaocheng, HU Xiong. Using One-Dimensional Variational Assimilation Algorithm to Obtain Atmospheric Refractive Index from Ground-Based GPS Phase Delay[J]. Geomatics and Information Science of Wuhan University, 2018, 43(7): 1042-1047. DOI: 10.13203/j.whugis20160238
    [4]LI Jingzhong, ZHANG Jinming. A Morphing Method for Smooth Area Features Based on Fourier Transform[J]. Geomatics and Information Science of Wuhan University, 2017, 42(8): 1104-1109. DOI: 10.13203/j.whugis20150157
    [5]OU Ming, ZHEN Weimin, XU Jisheng, YU Xiao, LIU Yiwen, LIU Dun. Regional Ionospheric TEC Reconstruction by Data Assimilation Technique[J]. Geomatics and Information Science of Wuhan University, 2017, 42(8): 1075-1081. DOI: 10.13203/j.whugis20150297
    [6]WANG Hongwei, HUANG Chunlin, HOU Jinliang, LI Xiaoying. Estimation of Snow Depth from Multi-source Data Fusion Based on Data Assimilation Algorithm[J]. Geomatics and Information Science of Wuhan University, 2016, 41(6): 848-852. DOI: 10.13203/j.whugis20140568
    [7]SONG Fucheng, SHI Shuangshuang, FENG Jiandi. Construction of Ionospheric TEC Assimilation Model Based on Chapman Function[J]. Geomatics and Information Science of Wuhan University, 2016, 41(6): 784-790. DOI: 10.13203/j.whugis20150101
    [8]ZHANG Xianfeng, ZHAO Jiepeng. System for Soil Moisture Retrieval and Data Assimilation from Remotely Sensed Data in Arid Regions[J]. Geomatics and Information Science of Wuhan University, 2012, 37(7): 794-799.
    [9]WU Mingguang, LUE Guonian, CHEN Taisheng. Data Structure Assimilation of Marker Symbol[J]. Geomatics and Information Science of Wuhan University, 2011, 36(2): 239-243.
    [10]CHEN Rongyuan, LIU Guoying, WANG Leiguang, QIN Qianqing. Fusion Algorithm of Multispectral and Panchromatic Images Based on the Data Assimilation[J]. Geomatics and Information Science of Wuhan University, 2009, 34(8): 919-923.
  • Cited by

    Periodical cited type(13)

    1. 杨忠荣. 低成本车载RTK高精度定位方法. 地理空间信息. 2025(03): 96-100 .
    2. 程建华,陈思成,臧楠,程思翔,赵国晶,马子凡. 附加自适应短时高程变化率约束的PPP/INS紧组合增强模型. 测绘学报. 2024(09): 1761-1776 .
    3. 王勋,崔先强,高天杭. 动力学模型自适应滤波算法研究. 武汉大学学报(信息科学版). 2023(05): 741-748 .
    4. 张一,尹潇,宋海娜. 运动方向约束的自适应SRUKF目标跟踪算法. 导航定位学报. 2023(05): 53-59 .
    5. 李清泉,吕世望,陈智鹏,殷煜,张德津. 冬奥会国家速滑馆超大地坪平整度快速测量. 武汉大学学报(信息科学版). 2022(03): 325-333 .
    6. 辜声峰,戴春齐,何成鹏,方礼喆,王梓豪. 面向城市车载导航的多系统PPP-RTK/VIO半紧组合算法性能分析. 武汉大学学报(信息科学版). 2021(12): 1852-1861 .
    7. 陶晓晓,卢小平,路泽忠,周雨石,余振宝. WiFi融合环境光定位方法研究. 测绘科学. 2020(06): 57-61+72 .
    8. 张辰东,王兆瑞. 一种长隧道内高速列车实时高精度定位方法. 计算机仿真. 2020(09): 124-128+188 .
    9. 尹潇,柴洪洲,向民志,杜祯强. 附加运动学约束的BDS抗差UKF导航算法. 测绘学报. 2020(11): 1399-1406 .
    10. 王诒国,潘孝星. 基于马氏距离的抗差卡尔曼滤波算法在组合导航中的应用. 北京测绘. 2020(12): 1810-1814 .
    11. 吕大千,曾芳玲,欧阳晓凤,于合理. 时频传递的改进整数相位钟方法. 测绘学报. 2019(07): 889-897 .
    12. 邓中亮,尹露,唐诗浩,刘延旭,宋汶轩. 室内定位关键技术综述. 导航定位与授时. 2018(03): 14-23 .
    13. 张迪,施昆,李照永. 移动测量系统的GNSS/INS组合定位方法的对比研究. 软件. 2018(08): 110-116 .

    Other cited types(18)

Catalog

    Article views (750) PDF downloads (100) Cited by(31)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return