MA Yueyuan, ZENG Anmin, XU Yangyin. Symmetric Difference Positioning Model and Analysis of Sailing Circle Mode of Seafloor Control Points[J]. Geomatics and Information Science of Wuhan University, 2024, 49(7): 1155-1165. DOI: 10.13203/j.whugis20210087
Citation: MA Yueyuan, ZENG Anmin, XU Yangyin. Symmetric Difference Positioning Model and Analysis of Sailing Circle Mode of Seafloor Control Points[J]. Geomatics and Information Science of Wuhan University, 2024, 49(7): 1155-1165. DOI: 10.13203/j.whugis20210087

Symmetric Difference Positioning Model and Analysis of Sailing Circle Mode of Seafloor Control Points

More Information
  • Received Date: June 21, 2022
  • Available Online: July 16, 2024
  • Objectives 

    The critical problem to be solved in the construction of a high-precision seafloor control network is to reduce the influence of systematic errors on the coordinate accuracy of seafloor control points during acoustic positioning.

    Methods 

    First, we analyze two positioning models: Non-difference and difference between epochs. Second, due to the change of sound velocity in seawater is affected by the long period term error and the short period term error, the system error caused by the shift in sound velocity in the measurement also has the characteristics of periodic change.

    Results and Conclusions 

    Based on this premise, a symmetric epoch differential positioning model was constructed. The results of simulation analysis and measured data analysis show that when the observation duration is an even multiple of the system error variation period, the symmetric differential positioning model can effectively reduce the influence of the system error on the positioning results. Still, when the observation duration is not an even multiple of the system error variation period, the model is no longer applicable.

  • [1]
    宁津生, 王华, 程鹏飞, 等. 2000国家大地坐标系框架体系建设及其进展[J]. 武汉大学学报(信息科学版), 2015, 40(5): 569-573.

    Ning Jinsheng, Wang Hua, Cheng Pengfei, et al. System Construction and Its Progress of China Geodetic Coordinate System 2000[J]. Geomatics and Information Science of Wuhan University, 2015, 40(5): 569-573.
    [2]
    杨元喜. 2000中国大地坐标系[J]. 科学通报, 2009, 54(16): 2271-2276.

    Yang Yuanxi. 2000 China Geodetic Coordinate System[J]. Chinese Science Bulletin, 2009, 54(16): 2271-2276.
    [3]
    吴富梅, 刘光明, 魏子卿. 利用局域欧拉矢量法建立CGCS2000速度场模型[J]. 武汉大学学报(信息科学版), 2012, 37(4): 432-435.

    Wu Fumei, Liu Guangming, Wei Ziqing. Velocity Field Model of CGCS2000 Based on Euler Vector of Local Area[J]. Geomatics and Information Science of Wuhan University, 2012, 37(4): 432-435.
    [4]
    Yang Y, Qin X. Resilient Observation Models for Seafloor Geodetic Positioning [J]. Journal of Geodesy, 2021, 95(7): 1-13.
    [5]
    刘经南, 赵建虎, 马金叶. 通导遥一体化深远海PNT基准及服务网络构想[J]. 武汉大学学报(信息科学版), 2022, 47(10): 1523-1534.

    Liu Jingnan,Zhao Jianhu,Ma Jinye.Concept of Constructing the Underwater PNT Network with the Abilities of Communication,Navigation and Remote Sensing in the Deep Sea[J].Geomatics and Information Scien‑ce of Wuhan University, 2022, 47(10): 1523-1534.
    [6]
    杨元喜, 刘焱雄, 孙大军, 等. 海底大地基准网建设及其关键技术[J]. 中国科学: 地球科学, 2020, 50(7): 936-945.

    Yang Yuanxi, Liu Yanxiong, Sun Dajun, et al.Seafloor Geodetic Network Establishment and Key Technologies[J]. Scientia Sinica (Terrae), 2020, 50(7): 936-945.
    [7]
    刘经南,陈冠旭, 赵建虎,等. 海洋时空基准网的进展与趋势[J]. 武汉大学学报(信息科学版), 2019, 44(1): 17-37.

    Liu Jingnan, Chen Guanxu, Zhao Jianhu, et al. Development and Trends of Marine Space-Time Frame Network [J]. Geomatics and Information Science of Wuhan University, 2019, 44(1): 17-37.
    [8]
    李林阳, 吕志平, 崔阳. 海底大地测量控制网研究进展综述[J]. 测绘通报, 2018 (1): 8-13.

    Li Linyang, Zhiping Lü, Cui Yang. Summary of the Research Progress of Seafloor Geodetic Control Network[J]. Bulletin of Surveying and Mapping, 2018(1): 8-13.
    [9]
    Yamada T, Ando M, Tadokoro K, et al. Error Evaluation in Acoustic Positioning of a Single Transponder for Seafloor Crustal Deformation Measurements[J]. Earth Planets Space, 2002, 54: 871-881.
    [10]
    Osada Y, Fujimoto H, Miura S, et al. Estimation and Correction for the Effect of Sound Velocity Variation on GPS/Acoustic Seafloor Positioning: An Experiment off Hawaii Island[J]. Earth Planets & Space, 2003, 55(10): 17-20.
    [11]
    Chen Guanxu, Liu Yang, Liu Yanxiong, et al. Adjustiment of Transceiver Lever Arm Offset and Sound Speed Bias for GNSS-Acoustic Positioning[J]. Remote Sensing, 2019, 31: 693-707.
    [12]
    马越原,杨元喜, 曾安敏,等. 顾及偏移参数先验信息的海底控制点贝叶斯估计模型[J]. 武汉大学学报信息科学版, 2023, 48(9): 1465-1472.

    Ma Yueyuan, Yang Yuanxi, Zeng Anmin, et al. Bayesian Estimation Model of Seafloor Control Points Based on Prior Information of Offset Parameters[J].Geomatics and Information Science of Wuhan University, 2023, 48(9): 1465-1472.
    [13]
    Mcintyre M C. Design and Testing of a seafloor Geodetic System[D]. San Diegom, CA: University of California, 1989.
    [14]
    马越原,杨元喜,曾安敏.GNSS-A直线测量模式及航迹组合优化分析[J].地球物理学报,2022,65(10):3797-3808.

    Ma Yueyuan, Yang Yuanxi, Zeng Anmin. GNSS-A Straight-Line Survey Pattern and Trajectory Combination Optimization Analysis[J]. Chinese Journal of Geophysics2022, 65 (10): 3797–3808.
    [15]
    Fujita M, Ishikawa T, Mochizuki M, et al. GPS/Acoustic Seafloor Geodetic Observation: Method of Data Analysis and its Application [J]. Earth Planets Space, 2006, 58: 265–275.
    [16]
    吴永亭. LBL精密定位理论方法研究及软件系统研制[D]. 武汉: 武汉大学,2013.

    Wu Yongting. Study on Theory and Method of Precise LBL Positioning and Development of Positioning Software System [D]. Wuhan: Wuhan University, 2013.
    [17]
    薛树强, 杨元喜. 广义反距离加权空间推估法[J]. 武汉大学学报(信息科学版), 2013, 38(12): 1435-1439.

    Xue Shuqiang, Yang Yuanxi. Generalized Inverse Distance Weighting Methodfor Spatial Interpolation[J]. Geomatics and Information Science of Wuhan University, 2013, 38(12): 1435-1439.
    [18]
    Zhao J, Zhou Y, Zhang H, et al. A New Method for Absolute Datum Transfer in Seafloor Control Network Measurement [J]. Journal of Marine Science and Technology, 2016, 21, 216-226.
    [19]
    Chen Guanxu, Liu Yang, Liu Yanxiong,et al. Improving GNSS-Acoustic Positioning by Optimizing the Ship's Track Lines and Observation Combinations[J]. Journal of Geodesy, 2021, 94(6): 61.
    [20]
    孙文舟, 曾安敏, 赵翔. 顾及参考深度误差的海底控制点迭代算法[J]. 武汉大学学报(信息科学版), 2024, 49(2): 324-330.

    Sun Wenzhou, Zeng Anmin, Zhao Xiang. Iterative Algorithm of Seafloor Control Points Positioning Taking Reference Depth Error into Account[J]. Geomatics and Information Science of Wuhan University, 2024, 49(2): 324-330.
    [21]
    Xu P L, Ando M, Tadokoro K.Precise Three-Dimensional Seafloor Geodetic Deformation Measurements Using Difference Techniques [J].Earth, Planets and Space, 2005, 57(9): 795-808.
    [22]
    Wang J, Xu T, Nie W, et al. The Construction of Sound Speed Field Based on Back Propagation Neural Network in the Global Ocean[J]. Marine Geodesy, 2020, 43(6): 1-14.
    [23]
    王燕, 林旺生, 梁国龙,等. 声线弯曲对同步水声定位系统影响分析及修正[J], 声学技术, 2009, 28(5): 123-124.

    Wang Yan, Lin Wangsheng, Liang Guolong, et al. The Influence and Revision of Ray Bending in Synchronous Underwater Acoustic Positioning System[J]. Technical Acoustics, 2009, 28(5): 123-124.
    [24]
    李圣雪,王振杰,聂志喜,等.一种适用于深海长基线定位的自适应分层声线跟踪法[J]. 海洋通报, 2015, 34(5): 491-498.

    Li Shengxue, Wang Zhenjie, Nie Zhixi, et al. A Self-adapting Division Ray-Tracing Method in the Long Baseline Acoustic Positioning [J].Marine Scien‑ce Bulletin, 2015, 34(5): 491-498.
    [25]
    王振杰, 李圣雪, 聂志喜,等. 水声定位中一种大入射角声线跟踪方法[J]. 武汉大学学报(信息科学版), 2016, 41(10): 1404-1408

    Wang Zhenjie, Li Shengxue, Nie Zhixi, et al. A Large Incidence Angle Ray-Tracing Method for Underwater Acoustic Positioning[J]. Geomatics and Information Science of Wuhan University, 2016, 41(10): 1404-1408.
    [26]
    阳凡林, 辛明真, 刘经南, 等. 超短基线多信标约束的深海动态定位方法探讨[J]. 武汉大学学报(信息科学版), 2023, 48(11): 1876-1883.

    Yang Fanlin, Xin Mingzhen, Liu Jingnan,et al. Discussion of Deep-Sea Dynamic Positioning Methods with Ultra-short Baseline Multi-beacon Constraint[J]. Geomatics and Information Science of Wuhan University, 2023, 48(11): 1876-1883.
    [27]
    Yang F L, Lu Xiu S, Li Jia B, et al.Precise Positioning of Underwater Static Objects Without Sound Speed Profile [J].Marine Geodesy, 2011, 34(2): 138-151.
    [28]
    孙文舟, 殷晓冬, 曾安敏, 等. 海底控制点定位初始入射角迭代计算方法的比较研究[J]. 武汉大学学报(信息科学版), 2020, 45(10): 1588-1593.

    Sun Wenzhou, Yin Xiaodong, Zeng Anmin, et al. Calculating the Starting Incidence Angle by Iterative Method for Positioning Seafloor Control Points[J]. Geomatics and Information Science of Wuhan University, 2020, 45(10): 1588-1593.
    [29]
    Spiess F N, Chadwell C D, Hildebrand J A, et al. Precise GPS/Acoustic Positioning of Seafloor Referen‑ce Points for Tectonic Studies[J].Physics of the Earth & Planetary Interiors,1998,108(2): 101-112.
    [30]
    陶本藻.相关平差与分组平差[J].测绘通报,1978(4):10-14.

    Tao Benzao. Correlation Adjustment and Grouping Adjustment[J]. Bulletin of Surveying and Mapping, 1978(4): 10-14.
    [31]
    Ma Y Y, Yang Y X, Li J L, et al. Model with Systematic Error Difference Constraint for Absolute Positioning of Seafloor Geodetic Stations[J].Ocean Engineering, 2024, 297: 117093.
    [32]
    Valérie B, Bouin M N, Stéphane C, et al. Absolute Seafloor Vertical Positioning Using Combined Pressure Gauge and Kinematic GPS Data[J]. Journal of Geodesy, 2010, 84(1):65-77.
    [33]
    赵建虎,邹亚靖,吴永亭,等.深度约束的海底控制网点坐标确定方法[J].哈尔滨工业大学学报,2016,48(10):137-141.

    Zhao Jianhu, Zou Yajing, Wu Yongting, et al. Determination of Underwater Control Point Coordinate Based on Constraint of Water Depth[J]. Journal of Harbin Institute of Technology, 2016,48(10): 137-141.
  • Related Articles

    [1]LIN Xuekai, XU Caijun. Deep-Learning-Empowered Earthquake Catalog Building: Comparison and Evaluation of PhaseNet and EqT Models[J]. Geomatics and Information Science of Wuhan University, 2022, 47(6): 855-865. DOI: 10.13203/j.whugis20220197
    [2]HE Biao, LI Lin, GUO Renzhong, SHI Yunfei. 3D Topological Reconstruction of Heterogeneous Buildings Considering Exterior Topology[J]. Geomatics and Information Science of Wuhan University, 2011, 36(5): 579-583.
    [3]ZHAN Qin, LI Deren, SUI Haigang, ZHANG Xia. A Method for Building Remote Sensing Information Services Classification Ontology[J]. Geomatics and Information Science of Wuhan University, 2010, 35(3): 343-346.
    [4]FEI Lifan, HE Jin. Displacement Models for Solving Graphic Conflicts Between Streets and Buildings[J]. Geomatics and Information Science of Wuhan University, 2007, 32(6): 540-543.
    [5]HE Jin, FEI Lifan. Mathematical Methods Involved in Constrained Reshaping for Solving Graphic Conflicts Between Streets and Buildings[J]. Geomatics and Information Science of Wuhan University, 2007, 32(4): 326-330.
    [6]XU Zhiyong, AI Tinghua, WEI Yongjun, ZHU Guorui. On Visual Variables of 3D Map Symbol[J]. Geomatics and Information Science of Wuhan University, 2006, 31(6): 557-560.
    [7]YIN Zhangcai, LI Lin, LONG Yi, ZHANG Yuanyu. Design of Area Map Symbols in Layers[J]. Geomatics and Information Science of Wuhan University, 2004, 29(12): 1111-1114.
    [8]FEI Lifan. Solving Graphic Conflicts Between Streets and Buildings in Map Compilation by Simulating Human Cartographers[J]. Geomatics and Information Science of Wuhan University, 2004, 29(5): 426-432. DOI: 10.13203/j.whugis2004.05.012
    [9]GUO Lizhen, LI Lin, HE Zongyi. Visual Search Processes and Cognitive Efficiency of Statistical Maps[J]. Geomatics and Information Science of Wuhan University, 2002, 27(6): 637-641.
    [10]WEI Wenzhan, ZHONG Yexun, HUANG Rentao, PENG Yueying. Mathematical Definition on the Visual Variables of the Cartographic Symbols[J]. Geomatics and Information Science of Wuhan University, 2002, 27(5): 511-515.
  • Cited by

    Periodical cited type(1)

    1. 李成名,武鹏达,印洁. 图数统一表达地理模型及自补偿方法. 测绘学报. 2017(10): 1688-1697 .

    Other cited types(4)

Catalog

    Article views (108) PDF downloads (24) Cited by(5)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return