WANG Yanli, DONG Zhipeng, WANG Mi. Ulva polifera Detection from High Resolution Remote Sensing Images Based on Dual-Path Convolutional Neural Networks[J]. Geomatics and Information Science of Wuhan University, 2024, 49(12): 2261-2270. DOI: 10.13203/j.whugis20230159
Citation: WANG Yanli, DONG Zhipeng, WANG Mi. Ulva polifera Detection from High Resolution Remote Sensing Images Based on Dual-Path Convolutional Neural Networks[J]. Geomatics and Information Science of Wuhan University, 2024, 49(12): 2261-2270. DOI: 10.13203/j.whugis20230159

Ulva polifera Detection from High Resolution Remote Sensing Images Based on Dual-Path Convolutional Neural Networks

More Information
  • Received Date: May 03, 2023
  • Available Online: September 07, 2023
  • Objectives 

    The green tide formed by Ulva prolifera (U. prolifera) is a harmful marine ecological disaster. The rapid and accurate detection is of great significance for timely management of U. prolifera and the healthy development of the marine industry.

    Methods 

    Because the boundary of U. prolifera area is difficult to be determined accurately in high resolution remote sensing images (HSRIs), an U. prolifera detection method for HSRIs based on dual-path convolutional neural networks (CNN) is proposed in this paper. First, a dual-path CNN semantic segmentation framework is designed based on the distribution characteristics of U. prolifera in HSRIs. The area and boundary of U. prolifera in HSRIs can be extracted simultaneously using the proposed framework. Then, the strategy for optimizing the initial U. prolifera area detection results based on U. prolifera boundary is proposed to improve the detection accuracy.

    Results 

    The experimental results show that the proposed method can extract U. prolifera accurately, with F1-score of 88.25%, intersection-over-union of 78.97% and over accuracy of 98.99%, which is better than other U. prolifera detection algorithms.

    Conclusions 

    The proposed method can obtain good results for the detection of different types of U. prolifera in HSRIs.

  • [1]
    刘峰, 逄少军. 黄海浒苔绿潮及其溯源研究进展[J]. 海洋科学进展, 2012, 30(3): 441-449.

    Liu Feng, Pang Shaojun. Research Advances on Green Tides in the Yellow Sea[J]. Advances in Marine Science, 2012, 30(3): 441-449.
    [2]
    Xu Q, Zhang H Y, Cheng Y C, et al. Monitoring and Tracking the Green Tide in the Yellow Sea with Satellite Imagery and Trajectory Model[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9(11): 5172-5181.
    [3]
    邱亚会, 卢剑波. 浒苔遥感监测研究进展[J]. 生态学报, 2015, 35(15): 4977-4985.

    Qiu Yahui, Lu Jianbo. Advances in the Monitoring of Enteromorpha Prolifera Using Remote Sensing[J]. Acta Ecologica Sinica, 2015, 35(15): 4977-4985.
    [4]
    王法景, 盛辉, 苏婧, 等. 基于GOCI数据的绿潮覆盖面积精细化提取方法[J]. 测绘地理信息, 2018, 43(5): 24-27.

    Wang Fajing, Sheng Hui, Su Jing, et al. Refined Extraction Method for Green Tide Coverage Area Based on GOCI Data[J]. Journal of Geomatics, 2018, 43(5): 24-27.
    [5]
    Pan X L, Meng D D, Ren P, et al. Macroalgae Monitoring from Satellite Optical Images Using Context-sensitive Level Set (CSLS) Model[J]. Ecolo⁃gical Indicators, 2023, 149: 110160.
    [6]
    丁一, 黄娟, 崔廷伟, 等. 基于NDVI与丰度关系的MODIS影像浒苔混合像元分解方法[J]. 海洋学报, 2015, 37(7): 123-131.

    Ding Yi, Huang Juan, Cui Tingwei, et al. The Decomposition Method of MODIS Images Enteromorpha Mixed Pixels Based on the Relation of NDVI to Abundance[J]. Haiyang Xuebao, 2015, 37(7): 123-131.
    [7]
    张广宗, 吴孟泉, 孙晓, 等. 南黄海浒苔漂移轨迹年际变化规律及驱动因素[J]. 海洋与湖沼, 2018, 49(5): 1084-1093.

    Zhang Guangzong, Wu Mengquan, Sun Xiao, et al. The Inter-Annual Drift and Driven Force of Ulva prolifera Bloom in the Southern Yellow Sea[J]. Oceanologia et Limnologia Sinica, 2018, 49(5): 1084-1093.
    [8]
    Hu L B, Zeng K, Hu C M, et al. On the Remote Estimation of Ulva prolifera Areal Coverage and Biomass[J]. Remote Sensing of Environment, 2019, 223: 194-207.
    [9]
    袁超, 张靖宇, 肖洁, 等. 基于哨兵2号卫星遥感影像的2018年苏北浅滩漂浮绿藻时空分布特征研究[J]. 海洋学报, 2020, 42(8): 12-20.

    Yuan Chao, Zhang Jingyu, Xiao Jie, et al. The Spatial and Temporal Distribution of Floating Green Algae in the Subei Shoal in 2018 Retrieved by Sentinel-2 Images[J]. Haiyang Xuebao, 2020, 42(8): 12-20.
    [10]
    万剑华, 万献慈, 刘善伟, 等. 多指数决策融合的MODIS浒苔提取方法[J]. 海洋环境科学, 2022, 41(2): 316-324.

    Wan Jianhua, Wan Xianci, Liu Shanwei, et al. MODIS Enteromorpha Extraction Algorithm Based on Multi-index Decision Fusion[J]. Marine Environmental Science, 2022, 41(2): 316-324.
    [11]
    Qi L, Wang M H, Hu C M. Uncertainties in MODIS-Derived Ulva prolifera Amounts in the Yellow Sea: A Systematic Evaluation Using Sentinel-2/MSI Observations[J]. IEEE Geoscience and Remote Sensing Letters, 2023, 20: 1501805.
    [12]
    Hu C M, Qi L, Hu L B, et al. Mapping Ulva prolifera Green Tides from Space: A Revisit on Algorithm Design and Data Products[J]. International Journal of Applied Earth Observation and Geoinformation, 2023, 116: 103173.
    [13]
    Wu S Y, Shao F J, Wang Y, et al. Enteromorphaprolifera Detection with MODIS Image Using Semi-supervised Clustering[J]. Journal of Computers, 2014, 9(5): 1259-1265.
    [14]
    张日升, 原明亭, 丁军航, 等. 基于图像阈值分割的浒苔图像提取[J]. 自动化技术与应用, 2020, 39(2): 83-86.

    Zhang Risheng, Yuan Mingting, Ding Junhang, et al. Enteromorpha Image Extraction Based on Image Threshold Segmentation[J]. Techniques of Automation and Applications, 2020, 39(2): 83-86.
    [15]
    Zhang H L, Yuan Y B, Xu Y J, et al. Remote Sensing Method for Detecting Green Tide Using HJ-CCD Top-of-Atmosphere Reflectance[J]. International Journal of Applied Earth Observation and Geoinformation, 2021, 102: 102371.
    [16]
    王怡人, 王胜强, 喻樾, 等. 一种提取南黄海浒苔的自适应阈值遥感算法[J]. 遥感信息, 2021, 36(2): 120-129.

    Wang Yiren, Wang Shengqiang, Yu Yue, et al. An Adaptive Threshold Algorithm for Detecting Ulva prolifera in Southern Yellow Sea by Remote Sensing[J]. Remote Sensing Information, 2021, 36(2): 120-129.
    [17]
    Zhang G Z, Wu M Q, Wei J, et al. Adaptive Threshold Model in Google Earth Engine: A Case Study of Ulva prolifera Extraction in the South Yellow Sea, China[J]. Remote Sensing, 2021, 13(16): 3240.
    [18]
    董志鹏, 王密, 李德仁, 等. 遥感影像目标的尺度特征卷积神经网络识别法[J]. 测绘学报, 2019, 48(10): 1285-1295.

    Dong Zhipeng, Wang Mi, Li Deren, et al. Object Detection in Remote Sensing Imagery Based on Convolutional Neural Networks with Suitable Scale Features[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(10): 1285-1295.
    [19]
    郭从洲, 李可, 李贺, 等. 遥感图像质量等级分类的深度卷积神经网络方法[J]. 武汉大学学报(信息科学版), 2022, 47(8): 1279-1286.

    Guo Congzhou, Li Ke, Li He, et al. Deep Convolution Neural Network Method for Remote Sensing Image Quality Level Classification[J]. Geomatics and Information Science of Wuhan University, 2022, 47(8): 1279-1286.
    [20]
    Dong Z P, Wang M, Wang Y L, et al. Object Detection in High Resolution Remote Sensing Imagery Based on Convolutional Neural Networks with Suitable Object Scale Features[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(3): 2104-2114.
    [21]
    Li J Y, Zhang S J, Zhang C, et al. Distinguishing Ulva prolifera and Sargassum horneri by Using Multi-Feature-Based ResUnet Algorithm[J]. Marine Geodesy, 2023, 46(4): 376-401.
    [22]
    Wang S K, Liu L, Qu L, et al. Accurate Ulva prolifera Regions Extraction of UAV Images with Superpixel and CNNs for Ocean Environment Monitoring[J]. Neurocomputing, 2019, 348: 158-168.
    [23]
    Li X F, Liu B, Zheng G, et al. Deep-Learning-Based Information Mining from Ocean Remote-Sensing Imagery[J]. National Science Review, 2020, 7(10): 1584-1605.
    [24]
    Wan X C, Wan J H, Xu M M, et al. Enteromorpha Coverage Information Extraction by 1D-CNN and Bi-LSTM Networks Considering Sample Balance from GOCI Images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 9306-9317.
    [25]
    Cui B G, Zhang H Q, Jing W, et al. SRSe-Net: Super-Resolution-Based Semantic Segmentation Network for Green Tide Extraction[J]. Remote Sensing, 2022, 14(3): 710.
    [26]
    Jin X F, Li Y, Wan J H, et al. MODIS Green-Tide Detection with a Squeeze and Excitation Oriented Generative Adversarial Network[J]. IEEE Access, 2022, 10: 60294-60305.
    [27]
    LeCun Y, Boser B, Denker J S, et al. Backpropagation Applied to Handwritten Zip Code Recognition[J]. Neural Computation, 1989, 1(4): 541-551.
    [28]
    Dong Z P, Liu Y X, Xu W X, et al. A Cloud Detection Method for GaoFen-6 Wide Field of View Imagery Based on the Spectrum and Variance of Superpixels[J]. International Journal of Remote Sensing, 2021, 42(16): 6312-6329.
    [29]
    杨军, 于茜子. 结合空洞卷积的FuseNet变体网络高分辨率遥感影像语义分割[J]. 武汉大学学报(信息科学版), 2022, 47(7): 1071-1080.

    Yang Jun, Yu Xizi. Semantic Segmentation of High-Resolution Remote Sensing Images Based on Improved FuseNet Combined with Atrous Convolution[J]. Geomatics and Information Science of Wuhan University, 2022, 47(7): 1071-1080.
  • Related Articles

    [1]SONG Weiwei, SONG Qisheng, HE Qianqian, GONG Xiaopeng, GU Shengfeng. Analysis of PPP-B2b Positioning Performance Enhanced by High-Precision Ionospheric Products[J]. Geomatics and Information Science of Wuhan University, 2024, 49(9): 1517-1526. DOI: 10.13203/j.whugis20230030
    [2]ZHU Shaolin, YUE Dongjie, HE Lina, CHEN Jian, LIU Shengnan. BDS-2/BDS-3 Joint Triple-Frequency Precise Point Positioning Models and Bias Characteristic Analysis[J]. Geomatics and Information Science of Wuhan University, 2023, 48(12): 2049-2059. DOI: 10.13203/j.whugis20210273
    [3]ZHAO Qile, TAO Jun, GUO Jing, CHEN Guo, XU Xiaolong, ZHANG Qiang, ZHANG Gaojian, XU Shengyi, LI Junqiang. Wide-Area Instantaneous cm-Level Precise Point Positioning: Method and Service System[J]. Geomatics and Information Science of Wuhan University, 2023, 48(7): 1058-1069. DOI: 10.13203/j.whugis20230202
    [4]YAN Zhongbao, ZHANG Xiaohong. Partial Ambiguity Resolution Method and Results Analysis for GNSS Uncombined PPP[J]. Geomatics and Information Science of Wuhan University, 2022, 47(6): 979-989. DOI: 10.13203/j.whugis20220025
    [5]ZHANG Hui, HAO Jinming, LIU Weiping, ZHOU Rui, TIAN Yingguo. GPS/BDS Precise Point Positioning Model with Receiver DCB Parameters for Raw Observations[J]. Geomatics and Information Science of Wuhan University, 2019, 44(4): 495-500, 592. DOI: 10.13203/j.whugis20170119
    [6]ZHANG Xiaohong, LIU Gen, GUO Fei, LI Xin. Model Comparison and Performance Analysis of Triple-frequency BDS Precise Point Positioning[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12): 2124-2130. DOI: 10.13203/j.whugis20180078
    [7]ZHANG Xiaohong, CAI Shixiang, LI Xingxing, GUO Fei. Accuracy Analysis of Time and Frequency Transfer Based on Precise Point Positioning[J]. Geomatics and Information Science of Wuhan University, 2010, 35(3): 274-278.
    [8]ZHANG Xiaohong, GUO Fei, LI Xingxing, LIN Xiaojing. Study on Precise Point Positioning Based on Combined GPS and GLONASS[J]. Geomatics and Information Science of Wuhan University, 2010, 35(1): 9-12.
    [9]FU Jianhong, YUAN Xiuxiao. Influence of GPS Base Station on Accuracy of Positioning by Airborne Position and Orientation System[J]. Geomatics and Information Science of Wuhan University, 2007, 32(5): 398-401.
    [10]Huang Shengxiang, Zhang Yan. Estimation of Accuracy Indicators for GPS Relative Positioning[J]. Geomatics and Information Science of Wuhan University, 1997, 22(1): 47-50.
  • Cited by

    Periodical cited type(22)

    1. 肖斌宸,叶飞,叶险峰,曾翔强. 电离层和地形复杂区域北斗/GNSS实时PPP性能及大气分析. 数据与计算发展前沿(中英文). 2025(01): 108-118 .
    2. 侯诚,史俊波,苟劲松,郭际明,邹进贵. 多路径误差对BDS-3变形监测精度的影响. 大地测量与地球动力学. 2024(02): 128-133 .
    3. 邓陈喜,姜维,王剑,蔡伯根. 基于北斗3号PPP-B2b信号的实时精密单点定位方法研究. 铁道学报. 2024(02): 63-73 .
    4. 于合理,孙晓东,贾赞杰,武智佳,代桃高. 限制环境下的GNSS精密授时方法研究综述. 海洋测绘. 2024(02): 46-50 .
    5. 许扬胤,任夏,明锋. 北斗三号PPP-B2b信号精密单点定位服务可用性分析. 全球定位系统. 2024(03): 10-19 .
    6. 肖恭伟,卞逸驰,何在民,广伟,尹翔飞,张润芝. 北斗三号PPP-B2b差分码偏差对UPPP解算的影响. 西安邮电大学学报. 2024(02): 1-10 .
    7. 宋伟伟,宋啟晟,何倩倩,龚晓鹏,辜声峰. 高精度电离层产品增强PPP-B2b定位性能分析. 武汉大学学报(信息科学版). 2024(09): 1517-1526 .
    8. 索世恒,韩昆,张永峰. 伽利略高精度服务产品与其全球定位性能评估. 地理空间信息. 2024(11): 100-104+121 .
    9. 孙爽,王敏,刘长建,孟欣,季锐. PPP-B2b服务钟差常数偏差特性及对定位的影响分析. 测绘科学. 2023(01): 8-15 .
    10. 郭文飞,朱萌萌,辜声峰,左鸿铭,陈金鑫. GNSS精密时频接收机时钟调控模型与参数设计方法. 武汉大学学报(信息科学版). 2023(07): 1126-1133 .
    11. 唐守普,吴文坛,夏振营,史进志,赵婉清,莫雁寒. 北斗三号PPP-B2b独立定位分析与应用. 河北省科学院学报. 2023(03): 61-69 .
    12. 赵淑洁,赵当丽,黄媛媛,纪元法. 基于PPP-B2b改正产品的北斗实时精密星历精度分析. 时间频率学报. 2023(02): 141-149 .
    13. 张润芝,何在民,马红皎,武建锋,广伟,肖恭伟. 北斗三号PPP-B2b信号跟踪环路的极点分布法设计. 时间频率学报. 2023(02): 161-169 .
    14. 姚夏,李志敏,吴如楠,毛飞宇,龚晓鹏. 北斗三号PPP-B2b信号时间同步性能分析. 导航定位学报. 2023(04): 84-89 .
    15. 史俊波,董新莹,欧阳晨皓,彭文杰,姚宜斌. 基于北斗三号PPP服务的快速静态和低动态定位性能分析. 大地测量与地球动力学. 2023(10): 997-1002 .
    16. 韩晓红,孙保琪,张喆,周红源,杨海彦,赵当丽,杨旭海. 基于北斗三号PPP-B2b轨道的实时精密共视时间传递. 导航定位与授时. 2023(04): 103-111 .
    17. 肖鹏,孙付平,张伦东,肖凯,商向永. 北斗三号PPP-B2b服务实时动态定位性能分析. 导航定位学报. 2023(05): 21-28 .
    18. 刘杨,曾安敏,郑翠娥,江鹏,刘焱雄. 广播式远程精密水下导航定位技术. 哈尔滨工程大学学报. 2023(11): 1987-1995 .
    19. 王林伟,周长江,余海锋,岳彩亚. 全球精密单点定位性能评估. 导航定位与授时. 2023(06): 86-92 .
    20. 赵泉涌,潘树国,缪巍巍,沈超,高旺,赵庆. PPP-B2b常数偏差实时改正后的多频单历元定位. 测绘科学. 2023(11): 61-68 .
    21. 彭松,刘建坤,张云龙,常丹,孙兆辉. 基于北斗三号远程监测系统的公路岩质边坡开挖变形分析. 科学技术与工程. 2022(33): 14898-14906 .
    22. 余德荧,金际航,刘一,边少锋. 基于北斗三号PPP-B2b信号的海上精密定位试验分析. 海洋测绘. 2022(06): 51-55+64 .

    Other cited types(9)

Catalog

    Article views (639) PDF downloads (144) Cited by(31)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return