Citation: | MAO Lin, CHEN Siyu, YANG Dawei. A Guided Method for Improving the Video Human Action Classification in Convolutional Neural Networks[J]. Geomatics and Information Science of Wuhan University, 2021, 46(8): 1241-1246. DOI: 10.13203/j.whugis20190101 |
[1] |
Tran D, Bourdev L, Fergus R, et al. Learning Spatiotemporal Features with 3D Convolutional Networks[C]// 2015 IEEE International Conference on Computer Vision, Santiago, Chile, 2015
|
[2] |
Tran D, Wang H, Torresani L, et al. A Closer Look at Spatiotemporal Convolutions for Action Recognition[C]// IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 2018
|
[3] |
裴颂文, 杨保国, 顾春华. 融合的三维卷积神经网络的视频流分类研究[J]. 小型微型计算机系统, 2018, 39(10): 2 266-2 270 https://www.cnki.com.cn/Article/CJFDTOTAL-XXWX201810027.htm
Pei Songwen, Yang Baoguo, Gu Chunhua. Research on Video Stream Classification Using 3D ConvNet Ensemble Fusion Model[J]. Journal of Chinese Computer Systems, 2018, 39(10): 2 266-2 270 https://www.cnki.com.cn/Article/CJFDTOTAL-XXWX201810027.htm
|
[4] |
吴培良, 杨霄, 毛秉毅, 等. 一种视角无关的时空关联深度视频行为识别方法[J]. 电子与信息学报, 2019, 41(4): 904-910 https://www.cnki.com.cn/Article/CJFDTOTAL-DZYX201904020.htm
Wu Peiliang, Yang Xiao, Mao Bingyi, et al. A Perspective-Independent Method for Behavior Recognition in Depth Video via Temporal-Spatial Correlating[J]. Journal of Electronics and Information Technology, 2019, 41(4): 904-910 https://www.cnki.com.cn/Article/CJFDTOTAL-DZYX201904020.htm
|
[5] |
Simonyan K, Zisserman A. Two-Stream Convolutional Networks for Action Recognition in Videos[C]// Advances in Neural Information Processing Systems, Montreal, Canada, 2014
|
[6] |
Sevilla-Lara L, Liao Y, Güney F, et al. On the Integration of Optical Flow and Action Recognition[C]// German Conference on Pattern Recognition, Springer, Cham, 2018
|
[7] |
Huang D A, Ramanathan V, Mahajan D, et al. What Makes a Video a Video: Analyzing Temporal Information in Video Understanding Models and Datasets[C]// IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 2018
|
[8] |
熊汉江, 郑先伟, 丁友丽, 等. 基于2D-3D语义传递的室内三维点云模型语义分割[J]. 武汉大学学报·信息科学版, 2018, 43(12): 2 303-2 309 doi: 10.13203/j.whugis20180190
Xiong Hanjiang, Zheng Xianwei, Ding Youli, et al. Semantic Segmentation of Indoor 3D Point Cloud Model Based on 2D-3D Semantic Transfer[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12): 2 303-2 309 doi: 10.13203/j.whugis20180190
|
[9] |
Luo Z, Hsieh J T, Jiang L, et al. Graph Distillation for Action Detection with Privileged Modalities[C]// European Conference on Computer Vision, Munich, Germany, 2018
|
[10] |
Wang X, Girshick R, Gupta A, et al. Non-local Neural Networks[C]// IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 2018
|
[11] |
Diba A, Sharma V, Van Gool L. Deep Temporal Linear Encoding Networks[C]// IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 2017
|
[12] |
He K, Zhang X, Ren S, et al. Identity Mappings in Deep Residual Networks[C]//European Conference on Computer Vision, Amsterdam, Netherlands, 2016
|
[13] |
Hara K, Kataoka H, Satoh Y. Can Spatiotemporal 3D CNNs Retrace the History of 2D CNNs and Imagenet?[C]// IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 2018
|
[14] |
Khurram S, Amir Z, Mubarak S. UCF-101: A Dataset of 101 Human Action Classes from Videos in the Wild[EB/OL]. (2012-12-01)[2019-05-13]. https://www.crcv.ucf.edu/papers/UCF101_CRCV-TR-12-01.pdf
|
[15] |
Kuehne H, Jhuang H, Garrote E, et al. HMDB: A Large Video Database for Human Motion Recognition[C]// International Conference on Computer Vision, Barcelona, Spain, 2011
|
[16] |
李锐, 沈雨奇, 蒋捷, 等. 公共地图服务中访问热点区域的时空规律挖掘[J]. 武汉大学学报·信息科学版, 2018, 43(9): 1 408-1 415 doi: 10.13203/j.whugis20160424
Li Rui, Shen Yuqi, Jiang Jie, et al. Temporal and Spatial Characteristics of Hotspots in Public Map Service[J]. Geomatics and Information Science of Wuhan University, 2018, 43(9): 1 408-1 415 doi: 10.13203/j.whugis20160424
|
[17] |
胡涛, 朱欣焰, 呙维, 等. 融合颜色和深度信息的运动目标提取方法[J]. 武汉大学学报·信息科学版, 2019, 44(2): 276-282 doi: 10.13203/j.whugis20160535
Hu Tao, Zhu Xinyan, Guo Wei, et al. A Moving Object Detection Method Combining Color and Depth Data[J]. Geomatics and Information Science of Wuhan University, 2019, 44(2): 276-282 doi: 10.13203/j.whugis20160535
|
[18] |
Borgwardt K M, Gretton A, Rasch M J, et al. Integrating Structured Biological Data by Kernel Maximum Mean Discrepancy[J]. Bioinformatics, 2006, 22(14): e49-e57 doi: 10.1093/bioinformatics/btl242
|
[19] |
Long M, Cao Y, Wang J, et al. Learning Transferable Features with Deep Adaptation Networks[C]// The 32nd International Conference on Machine Learning, Lille, France, 2015
|
[20] |
Long M, Zhu H, Wang J, et al. Deep Transfer Learning with Joint Adaptation Networks[C]// The 34th International Conference on Machine Learning, Sydney, Australia, 2017
|
[21] |
Xie S, Girshick R, Dollár P, et al. Aggregated Residual Transformations for Deep Neural Networks[C]// IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 2017
|
[1] | LI Qin, YOU Xiong, LI Ke, TANG Fen, WANG Weiqi. Image Matching Based on Local Object Matching[J]. Geomatics and Information Science of Wuhan University, 2022, 47(3): 419-427. DOI: 10.13203/j.whugis20190364 |
[2] | LU Xiao, ZHU Yiwei, YANG Muhua, ZHOU Xuanyu, WANG Yaonan. Reinforcement Learning Based End-to-End Autonomous Driving Decision-Making Method by Combining Image and Monocular Depth Features[J]. Geomatics and Information Science of Wuhan University, 2021, 46(12): 1862-1871. DOI: 10.13203/j.whugis20210409 |
[3] | ZOU Jing, CHEN Yonggang, GONG Jinqi, DONG Wanhu, SUN Yanfei, WANG Zhilin. An Efficient Matching Algorithm Based on Vector Graphics Using Multi-dimensional Object Segmentation Ratio[J]. Geomatics and Information Science of Wuhan University, 2020, 45(10): 1626-1632. DOI: 10.13203/j.whugis20190009 |
[4] | XU Yaming, SHI Juan, AN Dongdong, MA Xudong. Change Detection Based on Segmentation and Matched Features Points for UAV Images[J]. Geomatics and Information Science of Wuhan University, 2016, 41(10): 1286-1291. DOI: 10.13203/j.whugis20140873 |
[5] | ZHANG Chunsen, FAN Jinjian. Image Line Feature Relationship Matching with Object Structural Information[J]. Geomatics and Information Science of Wuhan University, 2012, 37(9): 1059-1063. |
[6] | ZHAO Binbin, DENG Min, XU Zhen, LIU Huimin. Development of General Rules for Matching Multi-scale Area Objects[J]. Geomatics and Information Science of Wuhan University, 2011, 36(8): 991-994. |
[7] | XIA Linyuan, XIAO Jun, LIN Liqun. Segment-based Stereo Matching Using Edge Dynamic Programming[J]. Geomatics and Information Science of Wuhan University, 2011, 36(7): 767-770. |
[8] | ZHENG Shunyi, ZHANG Zuxun, ZHAI Ruifang. 3D Reconstruction of Complex Objects Based on Non-metric Image[J]. Geomatics and Information Science of Wuhan University, 2008, 33(5): 446-449. |
[9] | LI Jiansong. Evolutions and Key Techniques for 3D Object Surface Vision-Measurement in Industry[J]. Geomatics and Information Science of Wuhan University, 2001, 26(4): 337-342. |
[10] | Guo Renzhong. Spatial Object Classification and Spatial Object Construction[J]. Geomatics and Information Science of Wuhan University, 1994, 19(1): 22-28. |