GE Yun, JIANG Shunliang, YE Famao, XU Qingyong, TANG Yiling. Remote Sensing Image Retrieval Using Pre-trained Convolutional Neural Networks Based on ImageNet[J]. Geomatics and Information Science of Wuhan University, 2018, 43(1): 67-73. DOI: 10.13203/j.whugis20150498
Citation: GE Yun, JIANG Shunliang, YE Famao, XU Qingyong, TANG Yiling. Remote Sensing Image Retrieval Using Pre-trained Convolutional Neural Networks Based on ImageNet[J]. Geomatics and Information Science of Wuhan University, 2018, 43(1): 67-73. DOI: 10.13203/j.whugis20150498

Remote Sensing Image Retrieval Using Pre-trained Convolutional Neural Networks Based on ImageNet

Funds: 

The National Natural Science Foundation of China 41261091

the Youth Fund Project of Education Department of Jiangxi GJJ13482

the National Natural Science Foundation of Jiangxi 20151BAB207062

More Information
  • Author Bio:

    GE Yun, PhD candidate, lecturer, specializes in remote sensing image retrieval. E-mail: geyun@nchu.edu.cn

  • Corresponding author:

    JIANG Shunliang, PhD, professor. E-mail: jiangshunliang@ncu.edu.cn

  • Received Date: May 08, 2016
  • Published Date: January 04, 2018
  • High resolution remote sensing images have complicated content and abundant detail information. Large semantic gaps will occur as such images are difficult to describe using traditional shallow features. This paper proposes a method using four different CNNs pre-trained on ImageNet to in remote sensing image retrieval. High-level features are extracted from different layers of four CNNs. A Gaussian normalization method is adopted to normalize high-level features, and Euclidean distance is used as the similarity measurement. A serial of experiments carried on the UC-Merced and WHU-RS datasets show that CNN-M feature achieves the best retrieval performance with CNN features. Compared with the visual bag of words and global morphological texture descriptors, the mean average precision of CNN features was 15.7%-25.6% higher than that of shallow features. The average normalizedmodified retrieval rank of CNN features was 17%-22.1% lower than that of shallow features. Therefore the pre-trained convolutional neural network is effective for high-resolution remote sensing image retrieval.
  • [1]
    Aptoula E. Remote Sensing Image Retrieval with Global Morphological Texture Descriptors[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(5):3023-3034 doi: 10.1109/TGRS.2013.2268736
    [2]
    Bretschneider T, Cavet R, Kao O. Retrieval of Remotely Sensed Imagery Using Spectral Information Content[C]. The 22nd IEEE International Conference of Geoscience and Remote Sensing Symposium, Toronto, Canada, 2002 http://ieeexplore.ieee.org/xpl/abstractKeywords.jsp?tp=&arnumber=1026510
    [3]
    Scott G, Klaric M, Davis C, et al. Entropy-Balanced Bitmap Tree for Shape-based Object Retrieval from Large-Scale Satellite Imagery Databases[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(5):1603-1616 doi: 10.1109/TGRS.2010.2088404
    [4]
    Demir B, Bruzzone L. A Novel Active Learning Method in Relevance Feedback for Content-based Remote Sensing Image Retrieval[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(9):2323-2334 https://www.researchgate.net/publication/271426283_An_effective_active_learning_method_for_interactive_content-based_retrieval_in_remote_sensing_images
    [5]
    Liu T, Zhang L, Li P, et al. Remotely Sensed Image Retrieval Based on Region-Level Semantic Mining[J].EURASIP Journal on Image and Video Preocessing, 2012, 4(1):1-11 doi: 10.1186/1687-5281-2012-4
    [6]
    Yang Y, Newsam S. Geographic Image Retrieval Using Local Invariant Features[J].IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(2):818-832 doi: 10.1109/TGRS.2012.2205158
    [7]
    杨进, 刘建波, 戴芹.一种改进包模型的遥感图像检索方法[J].武汉大学学报·信息科学版, 2014, 39(9):1109-1113 http://ch.whu.edu.cn/CN/abstract/abstract3080.shtml

    Yang Jin, Liu Jianbo, Dai Qin. An Improved Remote Sensing Image Retrieval Method Based on Bag of Word Framework[J]. Geomatics and Information Science of Wuhan University, 2014, 39(9):1109-1113 http://ch.whu.edu.cn/CN/abstract/abstract3080.shtml
    [8]
    Krizhevsky A, Sutskever I, Hinton G E. ImageNet Classification with Deep Convolutional Neural Networks[C]. The 26th Conference on Neural Information Processing Systems, Nevada, US, 2012 http://dl.acm.org/citation.cfm?id=3065386
    [9]
    Zeiler M D, Fergus R. Visualizing and Understanding Convolutional Networks[C]. The 13th European Conference on Computer Vision, Zurich, Switzerland, 2014
    [10]
    Simonyan K, Zisserman A. Very Deep Convolutional Networks for Large-Scale Image Recognition[C]. The 3rd International Conference on Learning Representations, San Diego, Canada, 2015 http://arxiv.org/abs/1409.1556
    [11]
    Donahue J, Jia Y, Vinyals O, et al. Decaf: A Deep Convolutional Activation Feature for Generic Visual Recognition[C]. The 31st International Conference on Machine Learning, Beijing, China, 2014 http://dl.acm.org/citation.cfm?id=3044879
    [12]
    Oquab M, Bottou L, Laptev I, et al. Learning and Transferring Mid-Level Image Representations using Convolutional Neural Networks[C]. The 27th IEEE Conference on Computer Vision and Pattern Recognition, Columbus, USA, 2014 http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6909618
    [13]
    Chatfield K, Simonyan K, Vedaldi A, et al. Return of the Devil in the Details: Delving Deep into Convolutional Networks[C]. The 25th British Machine Vision Conference, Nottingham, England, 2014 http://www.oalib.com/paper/4045769
    [14]
    Penatti O A B, Nogueira K, Santos J A D. Do Deep Features Generalize from Everyday Objects to Remote Sensing and Aerial Scenes Domains?[C]. The IEEE Conference on Computer Vision and Pattern Recognition Workshops, Boston, MA, 2015 doi: 10.1109/CVPRW.2015.7301382
    [15]
    Hu F, Xia G S, Hu J, et al.Transferring Deep Convolutional Neural Networks for the Scene Classification of High-Resolution Remote Sensing Imagery[J]. Remote Sensing. 2015, 7(11):14680-14707 doi: 10.3390/rs71114680
    [16]
    Ng J, Yang F, Davis L. Exploiting Local Features from Deep Networks for Image[C]. The IEEE Conference on Computer Vision and Pattern Recognition Workshops, Boston, MA, 2015 http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=7301272
    [17]
    Babenko A, Slesarev A, Chigorin A, et al. Neural Codes for Image Retrieval[C]. The 13th European Conference on Computer Vision, Zurich, Switzerland, 2014
    [18]
    Vedaldi A, Lenc K. MatConvNet: Convolutional Neural Networks for MATLAB[C]. The 23rd ACM International Conference on Multimedia, Brisbane, Austrialia, 2015 doi: 10.1145/2733373.2807412
    [19]
    Yang Y, Newsam S. Bag-of-Visual-Words and Spatial Extensions for Land-Use Classification[C]. The 18th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, San Jose, US, 2010 http://dl.acm.org/citation.cfm?id=1869829
    [20]
    Xia G S, Yang W, Delon J, et al. Structrual High-Resolution Satellite Image Indexing. In Processings of the ISPRS, TC Ⅶ Symposium Part A: 100 Years ISPRS-Advancing Remote Sensing Science[C]. ISPRS TC Ⅶ Symposium-100 Years ISPRS 38, Vienna, Austria, 2010
  • Cited by

    Periodical cited type(32)

    1. 王蕾,何鑫,廖成. 基于知识库相似检索的自然资源调查监测图斑辅助辨识方法. 测绘通报. 2025(02): 137-142 .
    2. 张秀锦,张秀民. 基于轻便的node.js地图识别模型实现分析. 山东交通科技. 2024(02): 130-132 .
    3. 汤冻,奚晓轶,闫涛. 一种用于电视节目播出异态识别的人工智能模型训练方法. 电视技术. 2023(01): 61-65 .
    4. 梁生珺,于明鑫. 应用于无人机平台的轻量Transformer排水口检测框架. 电子技术与软件工程. 2023(01): 165-168 .
    5. 陶立清,黄国满,杨书成,王童童,盛辉军,范海涛. 一种利用卷积神经网络的干涉图去噪方法. 武汉大学学报(信息科学版). 2023(04): 559-567 .
    6. 桂志鹏,胡晓辉,刘欣婕,凌志鹏,姜屿涵,吴华意. 顾及地理语义的地图检索意图形式化表达与识别. 地球信息科学学报. 2023(06): 1186-1201 .
    7. 李从初,励臣儒,朱佳敏,姚浩立. 基于迁移学习和Xception网络的海雾能见度等级估测研究. 浙江气象. 2023(01): 23-28 .
    8. 田启川,吴施瑶,马英楠. 基于卷积神经网络的光学遥感影像分析综述. 计算机应用与软件. 2023(10): 1-9+45 .
    9. 樊翔宇,张聪,杨柳. 融合梅尔谱和循环残差的小样本音频分类模型. 计算机仿真. 2022(02): 195-202 .
    10. 金海峰,吴楠,张悠然. 智慧家庭中的人体动作识别研究综述. 软件导刊. 2022(04): 240-247 .
    11. 冯新扬,邵超. 跨卷积网络特征融合的SAR图像目标识别. 系统仿真学报. 2021(03): 554-561 .
    12. 任加新,刘万增,李志林,李然,翟曦. 利用卷积神经网络进行“问题地图”智能检测. 武汉大学学报(信息科学版). 2021(04): 570-577 .
    13. 王建华,冉煜琨. 适用于便携式设备的深度神经网络眼动跟踪. 计算机与现代化. 2021(08): 58-63 .
    14. 郑雯,沈琪浩,任佳. 基于Improved DR-Net算法的糖尿病视网膜病变识别与分级. 光学学报. 2021(22): 72-83 .
    15. 任福,侯宛玥. 面向机器阅读的地图名称注记类别识别方法. 武汉大学学报(信息科学版). 2020(02): 273-280 .
    16. 吴晓玲,黄金雪,何文海. 基于深度卷积神经网络的塑料垃圾分类研究. 塑料科技. 2020(04): 86-89 .
    17. 叶宇光. 基于深度残差网络的图像识别技术研究. 韶关学院学报. 2020(06): 18-22 .
    18. 王科举,廉小亲,陈彦铭,安飒,龚永罡. 基于深度学习的机械臂视觉系统. 信息技术与信息化. 2020(08): 203-208 .
    19. 侯东阳,武昊,陈军. 时空数据Web搜索的研究进展. 地理信息世界. 2020(04): 1-12+21 .
    20. 刘彩玲,岳荷荷. 基于(2D)~2-PCANet的种子图像识别. 计算机应用与软件. 2020(10): 232-238 .
    21. 谢万里,李宏志,周辉,尹绍武. 基于迁移学习与卷积神经网络的鱼濒死预警系统研究. 中国农机化学报. 2019(02): 186-192 .
    22. 宋益盛,林志杰. 基于迁移学习和数据增强技术的物种识别. 现代计算机. 2019(14): 57-63 .
    23. 李雄,文开福,钟小明,杨辉,秦德浩. 基于深度学习的人脸识别考勤管理系统开发. 实验室研究与探索. 2019(07): 115-118+123 .
    24. 李静,韩震,王文柳,崔艳荣. 基于OverFeat模型的长江口南汇潮滩植被分类. 生态科学. 2019(04): 135-141 .
    25. 江涛,王新杰. 基于卷积神经网络的高分二号影像林分类型分类. 北京林业大学学报. 2019(09): 20-29 .
    26. 呙鹏程,吴礼洋. 融合卷积特征与判别字典学习的低截获概率雷达信号识别. 兵工学报. 2019(09): 1881-1889 .
    27. 刘洋,冯全,王书志. 基于轻量级CNN的植物病害识别方法及移动端应用. 农业工程学报. 2019(17): 194-204 .
    28. 门计林,刘越岩,张斌,周繁. 多结构卷积神经网络特征级联的高分影像土地利用分类. 武汉大学学报(信息科学版). 2019(12): 1841-1848 .
    29. 赵波,廖坤,邓春宇,谈元鹏,曹生现. 基于卷积神经学习的光伏板积灰状态识别与分析. 中国电机工程学报. 2019(23): 6981-6989+7111 .
    30. 尹宗天,谢超逸,刘苏宜,刘新如. 低分辨率图像的细节还原. 软件. 2018(05): 199-202 .
    31. 宋俊芳. 基于BP神经网络的图像分割. 数字通信世界. 2018(03): 66+170 .
    32. 朱祺夫,赵俊三,陈磊士,李易. 基于深度学习的遥感影像城市建筑用地提取. 软件导刊. 2018(10): 18-21 .

    Other cited types(62)

Catalog

    Article views (2728) PDF downloads (585) Cited by(94)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return