SHI Yunfei, LIU Kehui, LI Xiangwei, NIE Qingwei, LÜ Chunguang, ZHANG Lingling, SUN Huasheng. A 3D LOD Conceptual Model of Building with Indoor Spatial Structure and Its Generating Method[J]. Geomatics and Information Science of Wuhan University, 2022, 47(4): 561-569. DOI: 10.13203/j.whugis20200087
Citation: SHI Yunfei, LIU Kehui, LI Xiangwei, NIE Qingwei, LÜ Chunguang, ZHANG Lingling, SUN Huasheng. A 3D LOD Conceptual Model of Building with Indoor Spatial Structure and Its Generating Method[J]. Geomatics and Information Science of Wuhan University, 2022, 47(4): 561-569. DOI: 10.13203/j.whugis20200087

A 3D LOD Conceptual Model of Building with Indoor Spatial Structure and Its Generating Method

Funds: 

The Open Fund of Hebei Key Laboratory of Geological Resources and Environment Monitoring and Protection JCYKT201910

the Open Fund of Key Laboratory of Urban Land Resources Monitoring and Simulation, MNR KF-2018-03-034

the National Natural Science Foundation of China 41601555

the Natural Science Foundation of Shandong Province ZR2017BD018

More Information
  • Author Bio:

    SHI Yunfei, PhD, professor, specializes in the theories and application of 3D GIS, 3D cadastral and smart city. E-mail: 55734619@qq.com

  • Corresponding author:

    LIU Kehui, master. E-mail: 13933041570@163.com

  • Received Date: March 15, 2020
  • Published Date: April 04, 2022
  •   Objectives  Aiming at solving the problem that the representation of level of detail (LOD) for existing buildings is mainly external and seldom involves the internal space objects, a conceptual model of three-dimensional (3D) LOD for buildings with interior space structure is proposed.
      Methods  The conceptual model is divided into seven LOD levels: LOD0-LOD6, and the LOD consists of footprint, 3D box model, 3D floor model without sides, 3D floor model, 3D room model to 3D room model with semantic information such as doors and windows. The spatial details become gradually refined, which enriches the theory of LOD for building interior space. In order to create LOD models, a LOD generation method based on boundary operator and co-boundary operator of cell complex chain is proposed. The method introduces three concepts of cell, cell complex and complex chain from algebraic topology, and LOD is expressed by cell and cell complex. On the basis of LOD6, boundary operator and co-boundary operator are used to generate other LOD models with coarse spatial granularity.
      Results  The research shows that the proposed LODs can meet the needs of outdoor and indoor multiple detail representation, and the boundary operator and the co-boundary operator can convert LOD6 into coarse LODs.
      Conclusions  The research provides a new method to create 3D LOD of buildings with interior space structure for 3D city model.
  • [1]
    Biljecki F, Stoter J, Ledoux H, et al. Applications of 3D City Models: State of the Art Review[J]. ISPRS International Journal of Geo-Information, 2015, 4(4): 2842-2889 doi: 10.3390/ijgi4042842
    [2]
    赵君峤. 复杂三维建筑物模型的多细节层次自动简化方法[D]. 武汉: 武汉大学, 2012

    Zhao Junqiao. Automatic Simplification Approach for the LODs of Complex 3D Building Models[D]. Wuhan: Wuhan University, 2012
    [3]
    Gröger G, Kolbe T, Nagel C, et al. OGC City Geography Markup Language(CityGML)Encoding Standard[S]. Open Geospatial Consortium, 2012
    [4]
    Hagedorn B, Trapp M, Glander T, et al. Towards an Indoor Level-of-Detail Model for Route Visualization [C]//The 10th International Conference on Mobile Data Management: Systems, Services and Middle-ware, Taipei, Taiwan, China, 2009
    [5]
    Abdul-Rahman A, Zlatanova S, Coors V. Innovations in 3D Geo Information Systems[M]. Heidelberg: Springer, 2006
    [6]
    Boeters R. Automatic Enhancement of CityGML LOD2 Models with Interiors and Its Usability for Net Internal Area Determination[D]. Delft: Delft University of Technology, 2013
    [7]
    Löwner M O, Benner J, Gröger G, et al. New Concepts for Structuring 3D City Models —An Extended Level of Detail Concept for CityGML Buildings[C]// The 13th International Conference Computational Science and Its Applications, Malaga, Spain, 2013
    [8]
    Benner J, Geiger A, Gröger G, et al. Enhanced LOD Concepts for Virtual 3D City Models[J]. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2013, 2 (W1): 51-61
    [9]
    Biljecki F, Ledoux H, Stoter J, et al. Formalisation of the Level of Detail in 3D City Modelling[J]. Computers, Environment and Urban Systems, 2014, 48: 1-15 doi: 10.1016/j.compenvurbsys.2014.05.004
    [10]
    Tang L, Ying S, Li L, et al. An Application-Driven LOD Modeling Paradigm for 3D Building Models [J]. ISPRS Journal of Photogrammetry and Re⁃ mote Sensing, 2020, 161: 194-207 doi: 10.1016/j.isprsjprs.2020.01.019
    [11]
    Biljecki F. Level of Detail in 3D City Models[D]. Delft: Delft University of Technology, 2017
    [12]
    Lindstrom P, Turk G. Image-Driven Simplification [J]. ACM Transactions on Graphics, 2000, 19(3): 204-241 doi: 10.1145/353981.353995
    [13]
    Park I, Shirani S, Capson D W. Mesh Simplification Using an Area-Based Distortion Measure[J]. Journal of Mathematical Modelling and Algo⁃ rithms, 2006, 5(3): 309-329 doi: 10.1007/s10852-005-9036-8
    [14]
    van Oosterom P, Zlatanova S, Penninga F, et al. Advances in 3D Geoinformation Systems[M]. Heidelberg: Springer, 2008
    [15]
    应申, 陈乃镔, 李威阳, 等. 三维房产群集对象可视化方法[J]. 武汉大学学报·信息科学版, 2020, 45(1): 81-88 doi: 10.13203/j.whugis20190242

    Ying Shen, Chen Naibin, Li Weiyang, et al. Visualization Methods for the Coherent Set of 3D Building Property Units[J]. Geomatics and Informa⁃ tion Science of Wuhan University, 2020, 45(1): 81-88 doi: 10.13203/j.whugis20190242
    [16]
    Ying S, Chen N B, Li W Y, et al. Distortion Visualization Techniques for 3D Coherent Sets: A Case Study of 3D Building Property Units[J]. Computers, Environment and Urban Systems, 2019, 78: 101382 doi: 10.1016/j.compenvurbsys.2019.101382
    [17]
    Palmer R S, Shapiro V. Chain Models of Physical Behavior for Engineering Analysis and Design[J]. Research in Engineering Design, 1993, 5(3): 161-184
    [18]
    Palmer R S. Chain Models and Finite Element Analysis: An Executable Chains Formulation of Plane Stress[J]. Computer Aided Geometric Design, 1995, 12(7): 733-770 doi: 10.1016/0167-8396(95)00015-X
    [19]
    Egli R, Stewart N F. A Framework for System Specification Using Chains on Cell Complexes[J]. Computer-Aided Design, 2000, 32(7): 447-459 doi: 10.1016/S0010-4485(00)00024-5
    [20]
    王永志. 基于胞腔复形链的地下空间对象三维表达与分析计算统一数据模型研究[D]. 南京: 南京师范大学, 2012

    Wang Yongzhi. Research on the Unified Data Model of Three-Dimensional Representation and Analysis Calculation of Underground Spatial Objects Based on the Cell Complex Chain[D]. Nanjing: Nanjing Normal University, 2012
    [21]
    Di Carlo A, Milicchio F, Paoluzzi A, et al. Chain-Based Representations for Solid and Physical Modeling[J]. IEEE Transactions on Automation Science and Engineering, 2009, 6(3): 454-467 doi: 10.1109/TASE.2009.2021342
    [22]
    张玲玲, 史云飞, 吕春光, 等. 顾及拓扑的室内薄壁三维模型重建方法[J]. 测绘科学, 2019, 44(12): 141-146 https://www.cnki.com.cn/Article/CJFDTOTAL-CHKD201912021.htm

    Zhang Lingling, Shi Yunfei, Lü Chunguang, et al. A Method for Reconstructing Indoor Thin-Wall 3D Model Considering Topology[J]. Science of Surveying and Mapping, 2019, 44(12): 141-146 https://www.cnki.com.cn/Article/CJFDTOTAL-CHKD201912021.htm
    [23]
    史云飞, 卞西蜀, 张永翔, 等. 兼顾语义的室内3维模型自动重建方法[J]. 导航定位学报, 2020, 8(1): 9-14 https://www.cnki.com.cn/Article/CJFDTOTAL-CHWZ202001002.htm

    Shi Yunfei, Bian Xishu, Zhang Yongxiang, et al. An Automatic Reconstruction Method for Indoor Three-Dimensional Model Considering Semantics [J]. Journal of Navigation and Positioning, 2020, 8(1): 9-14 https://www.cnki.com.cn/Article/CJFDTOTAL-CHWZ202001002.htm
  • Related Articles

    [1]MENG Yiyue, GUO Chi, LIU Jingnan. Deep Reinforcement Learning Visual Target Navigation Method Based on Attention Mechanism and Reward Shaping[J]. Geomatics and Information Science of Wuhan University, 2024, 49(7): 1100-1108. DOI: 10.13203/j.whugis20230193
    [2]GAO Kuiliang, LIU Bing, YU Xuchu, YU Anzhu, SUN Yifan. Automatic Network Structure Search Method for Hyperspectral Image Classification[J]. Geomatics and Information Science of Wuhan University, 2024, 49(2): 225-235. DOI: 10.13203/j.whugis20210380
    [3]WANG Jie, LIU Jiahang, LING Xinpeng, DUAN Zexian. Deep Learning-Based Joint Local and Non-local InSAR Image Phase Filtering Method[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20240052
    [4]GUO Congzhou, LI Ke, LI He, TONG Xiaochong, WANG Xiwen. Deep Convolution Neural Network Method for Remote Sensing Image Quality Level Classification[J]. Geomatics and Information Science of Wuhan University, 2022, 47(8): 1279-1286. DOI: 10.13203/j.whugis20200292
    [5]LI Yansheng, ZHANG Yongjun. A New Paradigm of Remote Sensing Image Interpretation by Coupling Knowledge Graph and Deep Learning[J]. Geomatics and Information Science of Wuhan University, 2022, 47(8): 1176-1190. DOI: 10.13203/j.whugis20210652
    [6]JI Shunping, LUO Chong, LIU Jin. A Review of Dense Stereo Image Matching Methods Based on Deep Learning[J]. Geomatics and Information Science of Wuhan University, 2021, 46(2): 193-202. DOI: 10.13203/j.whugis20200620
    [7]ZHANG Liqiang, LI Yang, HOU Zhengyang, LI Xingang, GENG Hao, WANG Yuebin, LI Jingwen, ZHU Panpan, MEI Jie, JIANG Yanxiao, LI Shuaipeng, XIN Qi, CUI Ying, LIU Suhong. Deep Learning and Remote Sensing Data Analysis[J]. Geomatics and Information Science of Wuhan University, 2020, 45(12): 1857-1864. DOI: 10.13203/j.whugis20200650
    [8]JU Yuanzhen, XU Qiang, JIN Shichao, LI Weile, DONG Xiujun, GUO Qinghua. Automatic Object Detection of Loess Landslide Based on Deep Learning[J]. Geomatics and Information Science of Wuhan University, 2020, 45(11): 1747-1755. DOI: 10.13203/j.whugis20200132
    [9]PAN Yin, SHAO Zhenfeng, CHENG Tao, HE Wei. Analysis of Urban Waterlogging Influence Based on Deep Learning Model[J]. Geomatics and Information Science of Wuhan University, 2019, 44(1): 132-138. DOI: 10.13203/j.whugis20170217
    [10]FAN Heng, XU Jun, DENG Yong, XIANG Jinhai. Behavior Recognition of Human Based on Deep Learning[J]. Geomatics and Information Science of Wuhan University, 2016, 41(4): 492-497. DOI: 10.13203/j.whugis20140110
  • Cited by

    Periodical cited type(5)

    1. 张爱竹,李忍忍,梁树能,孙根云,付航. 联合样本扩充和谱空迭代的高光谱影像分类. 武汉大学学报(信息科学版). 2025(01): 97-109 .
    2. 杜培军,张伟,张鹏,林聪,郭山川,胡泽周. 一种联合空谱特征的高光谱影像分类胶囊网络. 测绘学报. 2023(07): 1090-1104 .
    3. 高奎亮,刘冰,余岸竹,徐佰祺,胡伟,胡家玮. 高光谱影像少样例分类的无监督元学习方法. 测绘学报. 2023(11): 1941-1952 .
    4. 张彬,刘亮,李晓杰,周伟. 基于深度学习的高光谱影像分类方法研究. 红外与毫米波学报. 2023(06): 825-833 .
    5. 孙一帆,余旭初,谭熊,刘冰,高奎亮. 面向小样本高光谱影像分类的轻量化关系网络. 武汉大学学报(信息科学版). 2022(08): 1336-1348 .

    Other cited types(1)

Catalog

    Article views PDF downloads Cited by(6)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return