Citation: | ZENG Weibo, CHEN Xiawei, TONG Kuang, YU Shuai. Research on Traffic Lights Timing Optimization and Simulation[J]. Geomatics and Information Science of Wuhan University, 2022, 47(4): 597-603. DOI: 10.13203/j.whugis20200029 |
[1] |
Pappis C P, Mamdani E H. A Fuzzy Logic Controller for a Traffic Junction[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1977, 7(10): 707-717. doi: 10.1109/TSMC.1977.4309605
|
[2] |
段峻. 一种基于模糊控制的信号灯自动配时算法[J]. 自动化技术与应用, 2019, 38(4): 10-12 doi: 10.3969/j.issn.1003-7241.2019.04.003
Duan Jun. A Signal Lights Automatic Timing Algorithm Based on Fuzzy Control[J]. Techniques of Automation and Applications, 2019, 38(4): 10-12 doi: 10.3969/j.issn.1003-7241.2019.04.003
|
[3] |
段宣翡, 唐泽杭. 基于车流量的红绿灯实时配时算法[J]. 硅谷, 2013, 6(13): 52-53 https://www.cnki.com.cn/Article/CJFDTOTAL-GGYT201313083.htm
Duan Xuanfei, Tang Zehang. Traffic Light Realtime Timing Algorithm Based on Traffic Flow[J]. Silicon Valley, 2013, 6(13): 52-53 https://www.cnki.com.cn/Article/CJFDTOTAL-GGYT201313083.htm
|
[4] |
钱伟, 孙玉娟. 城市干线交通信号的模糊协调控制研究[J]. 河南理工大学学报(自然科学版), 2014, 33(5): 621-625 doi: 10.3969/j.issn.1673-9787.2014.05.013
Qian Wei, Sun Yujuan. Research on Fuzzy Coordination Control of Urban Arterial Traffic Signal[J]. Journal of Henan Polytechnic University (Natural Science), 2014, 33(5): 621-625 doi: 10.3969/j.issn.1673-9787.2014.05.013
|
[5] |
李鑫瑞. 基于模糊控制的交通信号配时优化[D]. 西安: 西安科技大学, 2016
Li Xinrui. Traffic Signal Timing Optimization Based on Fuzzy Control[D]. Xi'an: Xi'an University of Science and Technology, 2016
|
[6] |
曹小玲, 莫红, 朱凤华. 时变论域下红绿灯配时的模糊控制[J]. 测控技术, 2019, 38(11): 115-120 https://www.cnki.com.cn/Article/CJFDTOTAL-IKJS201911025.htm
Cao Xiaoling, Mo Hong, Zhu Fenghua. Fuzzy Control of Timing for Traffic Lights Based on TimeVarying Universe[J]. Measurement & Control Technology, 2019, 38(11): 115-120 https://www.cnki.com.cn/Article/CJFDTOTAL-IKJS201911025.htm
|
[7] |
慕飞飞, 张惠珍. 基于遗传算法的单点交叉口信号配时优化[J]. 上海理工大学学报, 2015, 37(6): 600-604 https://www.cnki.com.cn/Article/CJFDTOTAL-HDGY201506017.htm
Mu Feifei, Zhang Huizhen. Signal Timing Optimization at Single-Point Intersection Based on Genetic Algorithm[J]. Journal of University of Shanghai for Science and Technology, 2015, 37(6): 600-604 https://www.cnki.com.cn/Article/CJFDTOTAL-HDGY201506017.htm
|
[8] |
李硕, 付珊, 贺文, 等. 基于遗传算法的左转待行区交叉口信号配时优化研究[J]. 公路工程, 2018, 43(5): 131-137 https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGL201805025.htm
Li Shuo, Fu Shan, He Wen, et al. Study on Signal Timing Optimization of the Intersection with LeftTurn Waiting Area Based on Genetic Algorithm[J]. Highway Engineering, 2018, 43(5): 131-137 https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGL201805025.htm
|
[9] |
王逸, 姚志洪, 蒋阳升, 等. 基于自适应遗传算法的双环信号配时优化模型[J]. 工业工程, 2018, 21(5): 72-80 https://www.cnki.com.cn/Article/CJFDTOTAL-GDJX201805011.htm
Wang Yi, Yao Zhihong, Jiang Yangsheng, et al. The Dual-Phase Signal Timing Optimization Model Based on Adaptive Genetic Algorithm[J]. Industrial Engineering Journal, 2018, 21(5): 72-80 https://www.cnki.com.cn/Article/CJFDTOTAL-GDJX201805011.htm
|
[10] |
张力, 何军, 李奇. 结合遗传算法的混合式蚁群单点交叉口信号配时算法[J]. 计算机光盘软件与应用, 2014, 17(21): 91-94 https://www.cnki.com.cn/Article/CJFDTOTAL-GPRJ201421060.htm
Zhang Li, He Jun, Li Qi. Hybrid Ant Colony Single-Point Intersection Signal Timing Algorithm Based on Genetic Algorithm [J]. Computer CD Software and Applications, 2014, 17(21): 91-94 https://www.cnki.com.cn/Article/CJFDTOTAL-GPRJ201421060.htm
|
[11] |
俞佳莹. 车辆侧向目标的超声波传感器阵列感知研究[D]. 北京: 清华大学, 2016
Yu Jiaying. Dynamical Tracking of Surrounding Objects for Road Vehicles Using Linearly-Arrayed Ultrasonic Sensors[D]. Beijing: Tsinghua University, 2016
|
[12] |
顾夫挺. 基于多传感器的车辆检测方法及其可靠性分析[D]. 杭州: 浙江工业大学, 2019
Gu Futing. Vehicle Detection Method Based on Multi-sensors and Its Reliability Analysis [D]. Hangzhou: Zhejiang University of Technology, 2019
|
[13] |
余得生, 谢英仪, 徐玉萍. 智能红绿灯交叉路口实时配时研究: 以南昌市红谷滩新区为例[J]. 华东交通大学学报, 2015, 32(5): 35-43 https://www.cnki.com.cn/Article/CJFDTOTAL-HDJT201505007.htm
Yu Desheng, Xie Yingyi, Xu Yuping. Research on Real-Time Timing of Intelligent Traffic Light Intersection-Taking the Honggutan District of Nanchang as an Example[J]. Journal of East China Jiaotong University, 2015, 32(5): 35-43 https://www.cnki.com.cn/Article/CJFDTOTAL-HDJT201505007.htm
|
[14] |
郑志杰. 基于计算机视觉的智慧红绿灯研究[D]. 杭州: 杭州电子科技大学, 2016
Zheng Zhijie. Research on Intelligent Traffic Lights Based on Computer Vision[D]. Hangzhou: Hangzhou Dianzi University, 2016
|
[15] |
高冠东. 监狱智能视频监控技术及应用[M]. 保定: 河北大学出版社, 2016
Gao Guandong. Prison Intelligent Video Surveillance Technology and Application [M]. Baoding: Hebei University Press, 2016.
|
[16] |
余京蕾. 浅谈计算机视觉技术进展及其新兴应用[J]. 北京联合大学学报, 2020, 34(1): 63-69 https://www.cnki.com.cn/Article/CJFDTOTAL-BJLH202001017.htm
Yu Jinglei. A Study on the Progress of Computer Vision and Its Newly Developing Applications[J]. Journal of Beijing Union University, 2020, 34(1): 63-69 https://www.cnki.com.cn/Article/CJFDTOTAL-BJLH202001017.htm
|
[17] |
张硕. 基于视频的车流量检测与车辆跟踪方法研究[D]. 北京: 华北电力大学, 2014
Zhang Shuo. Research on Vehicle Flow Detection and Vehicle Tracking Algorithm Based on Video [D]. Beijing: North China Electric Power University, 2014
|
[18] |
李谦, 张永军, 卢洪树, 等. 基于错误式学习的低空影像人行横道多角度自动识别[J]. 武汉大学学报·信息科学版, 2018, 43(1): 46-52 doi: 10.13203/j.whugis20150342
Li Qian, Zhang Yongjun, Lu Hongshu, et al. Detection of Pedestrian Crossings with Hierarchical Learning Classifier from Multi-angle Low Altitude Images[J]. Geomatics and Information Science of Wuhan University, 2018, 43(1): 46-52 doi: 10.13203/j.whugis20150342
|
[19] |
吴佳奇, 蒋永华, 沈欣, 等. 决策树弱分类支持的卫星视频运动检测[J]. 武汉大学学报·信息科学版, 2019, 44(8): 1182-1190 doi: 10.13203/j.whugis20180094
Wu Jiaqi, Jiang Yonghua, Shen Xin, et al. Satellite Video Motion Detection Supported by Decision Tree Weak Classification[J]. Geomatics and Information Science of Wuhan University, 2019, 44(8): 1182-1190 doi: 10.13203/j.whugis20180094
|
[20] |
方敏学. 基于机器视觉的智能交通灯的研究[D]. 成都: 电子科技大学, 2017
Fang Minxue. Researches on Intelligent Traffic Light Based on Machine Vision[D]. Chengdu: University of Electronic Science and Technology of China, 2017
|
[21] |
朱秋林, 石银涛, 李靖. 一种改进型Canny算子边缘检测算法[J]. 地理空间信息, 2020, 18(1): 128-130 https://www.cnki.com.cn/Article/CJFDTOTAL-DXKJ202001035.htm
Zhu Qiulin, Shi Yintao, Li Jing. Improved Edge Detection Algorithm Based on Canny Operator[J]. Geospatial Information, 2020, 18(1): 128-130 https://www.cnki.com.cn/Article/CJFDTOTAL-DXKJ202001035.htm
|
[22] |
刘佳悦. 基于多目标优化以及模糊控制理论的单交叉口信号灯配时算法的研究[D]. 长春: 吉林大学, 2018
Liu Jiayue. The Research on Signal Timing Algorithm of Single Intersection Based on Multi-objective Optimization and Fuzzy Control Theory[D]. Changchun: Jilin University, 2018
|
[23] |
李维炼, 朱军, 张昀昊, 等. 空间语义约束的泥石流灾害VR场景融合建模及交互方法[J]. 武汉大学学报·信息科学版, 2020, 45(7): 1073-1081 doi: 10.13203/j.whugis20180329
Li Weilian, Zhu Jun, Zhang Yunhao, et al. A Fusion Modeling and Interaction Method with Spatial Semantic Constraint for Debris Flow VR Scene[J]. Geomatics and Information Science of Wuhan University, 2020, 45(7): 1073-1081 doi: 10.13203/j.whugis20180329
|
[1] | MENG Yiyue, GUO Chi, LIU Jingnan. Deep Reinforcement Learning Visual Target Navigation Method Based on Attention Mechanism and Reward Shaping[J]. Geomatics and Information Science of Wuhan University, 2024, 49(7): 1100-1108. DOI: 10.13203/j.whugis20230193 |
[2] | GAO Kuiliang, LIU Bing, YU Xuchu, YU Anzhu, SUN Yifan. Automatic Network Structure Search Method for Hyperspectral Image Classification[J]. Geomatics and Information Science of Wuhan University, 2024, 49(2): 225-235. DOI: 10.13203/j.whugis20210380 |
[3] | WANG Jie, LIU Jiahang, LING Xinpeng, DUAN Zexian. Deep Learning-Based Joint Local and Non-local InSAR Image Phase Filtering Method[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20240052 |
[4] | GUO Congzhou, LI Ke, LI He, TONG Xiaochong, WANG Xiwen. Deep Convolution Neural Network Method for Remote Sensing Image Quality Level Classification[J]. Geomatics and Information Science of Wuhan University, 2022, 47(8): 1279-1286. DOI: 10.13203/j.whugis20200292 |
[5] | LI Yansheng, ZHANG Yongjun. A New Paradigm of Remote Sensing Image Interpretation by Coupling Knowledge Graph and Deep Learning[J]. Geomatics and Information Science of Wuhan University, 2022, 47(8): 1176-1190. DOI: 10.13203/j.whugis20210652 |
[6] | JI Shunping, LUO Chong, LIU Jin. A Review of Dense Stereo Image Matching Methods Based on Deep Learning[J]. Geomatics and Information Science of Wuhan University, 2021, 46(2): 193-202. DOI: 10.13203/j.whugis20200620 |
[7] | ZHANG Liqiang, LI Yang, HOU Zhengyang, LI Xingang, GENG Hao, WANG Yuebin, LI Jingwen, ZHU Panpan, MEI Jie, JIANG Yanxiao, LI Shuaipeng, XIN Qi, CUI Ying, LIU Suhong. Deep Learning and Remote Sensing Data Analysis[J]. Geomatics and Information Science of Wuhan University, 2020, 45(12): 1857-1864. DOI: 10.13203/j.whugis20200650 |
[8] | JU Yuanzhen, XU Qiang, JIN Shichao, LI Weile, DONG Xiujun, GUO Qinghua. Automatic Object Detection of Loess Landslide Based on Deep Learning[J]. Geomatics and Information Science of Wuhan University, 2020, 45(11): 1747-1755. DOI: 10.13203/j.whugis20200132 |
[9] | PAN Yin, SHAO Zhenfeng, CHENG Tao, HE Wei. Analysis of Urban Waterlogging Influence Based on Deep Learning Model[J]. Geomatics and Information Science of Wuhan University, 2019, 44(1): 132-138. DOI: 10.13203/j.whugis20170217 |
[10] | FAN Heng, XU Jun, DENG Yong, XIANG Jinhai. Behavior Recognition of Human Based on Deep Learning[J]. Geomatics and Information Science of Wuhan University, 2016, 41(4): 492-497. DOI: 10.13203/j.whugis20140110 |