DAI Cong, LI Weile, LU Huiyan, YANG Fan, XU Qiang, JIAN Ji. Active Landslides Detection in Zhouqu County, Gansu Province Using InSAR Technology[J]. Geomatics and Information Science of Wuhan University, 2021, 46(7): 994-1002. DOI: 10.13203/j.whugis20190457
Citation: DAI Cong, LI Weile, LU Huiyan, YANG Fan, XU Qiang, JIAN Ji. Active Landslides Detection in Zhouqu County, Gansu Province Using InSAR Technology[J]. Geomatics and Information Science of Wuhan University, 2021, 46(7): 994-1002. DOI: 10.13203/j.whugis20190457

Active Landslides Detection in Zhouqu County, Gansu Province Using InSAR Technology

Funds: 

Sichuan-Tibet Railway of the National Natural Science Foundation of China 41941019

the Science Fund for Creative Research Groups of China 41521002

the Funds of Sichuan Science and Technology Support Plan 2017JQ0031

the Funds of Sichuan Science and Technology Support Plan 2018SZ0339

the Science and Technology Innovation Fund of Sichuan Earthquake Agency 201901

More Information
  • Author Bio:

    DAI Cong, postgraduate, specializes in geological hazard early detection by InSAR.E-mail: 149834307@qq.com

  • Corresponding author:

    LI Weile, PhD, professor. E-mail: liweile08@mail.cdut.edu.cn

  • Received Date: May 03, 2020
  • Published Date: July 09, 2021
  •   Objectives  Zhouqu County in Gansu Province is highly prone to landslides. On July 12, 2018, a landslide blocked the Bailong River near the county, posing a serious threat to the life and property of local residents and the safety of infrastructure. The early identification of potential landslides around this area is of great significance to protect the life and property of local residents and the security of its infrastructure.
      Methods  Firstly, small baseline subset interferometry technology (SBAS-InSAR) was adopted to identify the potential active landslides in the surrounding area of Zhouqu County, with the Sentinel-1A satellite ascending and descending images from October 2017 to December 2018. Then, a combination of optical remote sensing image interpretation and field investigation is used to determine and identify potential landslides. The visual interpretation method can be used to identify landslides that have occurred or are occurring on the optical images. The field investigation was used to verify the landslide results identified by InSAR and optical imagery to increase the effectiveness and accuracy of landslide detection.
      Results  A total of 23 active landslides were detected in the study area, with 16 active landslides detected on the ascending images and 11 on the descending images, with 4 active landslides having valid deformation information detected on both the ascending and descending images. Combined with the visual interpretation of optical remote sensing images and field investigation, the deformation characteristics of 4 typical landslides, including Jiangdingya, Mentouping, Suoertou, and Xieliupo Landslides, were analyzed. It was found that the deformation rates of Jiangdingya, Mentouping, and Xieliupo Landslides were significantly higher during the rainy season than during the non-rainy season, and the Suoertou Landslide did not show a significant increase in the deformation rate during the rainy season but showed fluctuations in the deformation rate during the rainy season.
      Conclusions  The use of single-orbit radar satellite data for landslide detection can easily lead to the missed detection of landslide hazards, and the combined use of ascending and descending radar images can improve the accuracy of landslide detection in steep mountainous terrain. The deformation rates of active landslides in the study area have a good correlation with rainfall. The results can provide supports for the geohazard mitigation and prevention in Zhouqu County. The strategy which combines optical imagery, field investigation, and time-series InSAR can efficiently and accurately detect and monitor landslides over a wide area.
  • [1]
    许强, 董秀军, 李为乐. 基于天-空-地一体化的重大地质灾害隐患早期识别与监测预警[J]. 武汉大学学报·信息科学版, 2019, 44(7): 957-966 http://ch.whu.edu.cn/cn/y2019/v44/i7/957

    Xu Qiang, Dong Xiujun, Li Weile. Integrated Space-Air-Ground Early Detection, Monitoring and Warning System for Potential Catastrophic Geohazards[J]. Geomatics and Information Science of Wuhan University, 2019, 44(7): 957- 966 http://ch.whu.edu.cn/cn/y2019/v44/i7/957
    [2]
    李为乐, 许强, 陆会燕, 等. 大型岩质滑坡形变历史回溯及其启示[J]. 武汉大学学报·信息科学版, 2019, 44(7): 1 043-1 053 http://ch.whu.edu.cn/article/id/6446

    Li Weile, Xu Qiang, Lu Huiyan, et al. Tracking the Deformation History of Large-Scale Rocky Landslides and Its Enlightenment[J]. Geomatics and Information Science of Wuhan University, 2019, 44(7): 1 043-1 053 http://ch.whu.edu.cn/article/id/6446
    [3]
    刘传正, 苗天宝, 陈红旗, 等. 甘肃舟曲2010年8月8日特大山洪泥石流灾害的基本特征及成因[J]. 地质通报, 2011, 30(1): 141-150 doi: 10.3969/j.issn.1671-2552.2011.01.015

    Liu Chuanzheng, Miao Tianbao, Chen Hongqi, et al. Basic Feature and Origin of the "8·8" Mountain Torrent-Debris Flow Disaster Happened in Zhouqu County, Gansu, China, Aug. 8, 2010[J]. Geological Bulletin of China, 2011, 30(1): 141-150 doi: 10.3969/j.issn.1671-2552.2011.01.015
    [4]
    赵超英, 刘晓杰, 张勤, 等. 甘肃黑方台黄土滑坡InSAR识别、监测与失稳模式研究[J]. 武汉大学学报·信息科学版, 2019, 44(7): 996-1 007 http://ch.whu.edu.cn/CN/Y2019/V44/I7/996

    Zhao Chaoying, Liu Xiaojie, Zhang Qin, et al. Research on Loess Landslide Identification, Monitoring and Failure Mode with InSAR Technique in Heifangtai, Gansu[J]. Geomatics and Information Science of Wuhan University, 2019, 44(7): 996-1 007 http://ch.whu.edu.cn/CN/Y2019/V44/I7/996
    [5]
    Dong J, Liao M S, Xu Q, et al. Detection and Displacement Characterization of Landslides Using Multi-temporal Satellite SAR Interferometry: A Case Study of Danba County in the Dadu River Basin[J]. Engineering Geology, 2018, 240: 90-109 http://www.sciencedirect.com/science/article/pii/S0013795217310736
    [6]
    霍东平, 张彬, 彭军还, 等. 滑坡变形监测技术研究现状与展望[J]. 工程勘察, 2015, 43(8): 62-67 https://www.cnki.com.cn/Article/CJFDTOTAL-GCKC201508013.htm

    Huo Dongping, Zhang Bin, Peng Junhuan, et al. Review and Prospective of Landslide Deformation Monitoring[J]. Geotechnical Investigation & Surveying, 2015, 43(8): 62-67 https://www.cnki.com.cn/Article/CJFDTOTAL-GCKC201508013.htm
    [7]
    Guo J M, Hu J Y, Li B, et al. Land Subsidence in Tianjin for 2015 to 2016 Revealed by the Analysis of Sentinel-1A with SBAS-InSAR[J]. Journal of Applied Remote Sensing, 2017, 11(2): 026024 doi: 10.1117/1.JRS.11.026024
    [8]
    陆会燕, 李为乐, 许强, 等. 光学遥感与InSAR结合的金沙江白格滑坡上下游滑坡隐患早期识别[J]. 武汉大学学报·信息科学版, 2019, 44(9): 1 342-1 354 http://ch.whu.edu.cn/article/id/6507

    Lu Huiyan, Li Weile, Xu Qiang, et al. Early Detection of Landslides in the Upstream and Downstream Areas of the Baige Landslide, the Jinsha River Based on Optical Remote Sensing and InSAR Technologies[J]. Geomatics and Information Science of Wuhan University, 2019, 44(9): 1 342-1 354 http://ch.whu.edu.cn/article/id/6507
    [9]
    张路, 廖明生, 董杰, 等. 基于时间序列InSAR分析的西部山区滑坡灾害隐患早期识别——以四川丹巴为例[J]. 武汉大学学报·信息科学版, 2018, 43(12): 286-296 http://ch.whu.edu.cn/article/id/6288

    Zhang Lu, Liao Mingsheng, Dong Jie, et al. Early Detection of Landslide Hazards in Mountainous Areas of West China Using Time Series SAR Interferometry—A Case Study of Danba, Sichuan[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12): 286-296 http://ch.whu.edu.cn/article/id/6288
    [10]
    Crosetto M, Monserrat O, Cuevas G, et al. Persistent Scatterer Interferometry: A Review[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2015, 115: 78-89 http://www.sciencedirect.com/science/article/pii/S0924271615002415
    [11]
    Zhang Y, Meng X M, Chen G, et al. Detection of Geohazards in the Bailong River Basin Using Synthetic Aperture Radar Interferometry[J]. Landslides, 2016, 13(5): 1 273-1 284 doi: 10.1007/s10346-015-0660-8
    [12]
    Sun Q, Zhang L, Ding X L, et al. Slope Deformation Prior to Zhouqu, China Landslide from InSAR Time Series Analysis[J]. Remote Sensing of Environment, 2015, 156: 45-57 doi: 10.1016/j.rse.2014.09.029
    [13]
    张之贤, 张强, 陶际春, 等. 2010年"8·8"舟曲特大山洪泥石流灾害形成的气候特征及地质地理环境分析[J]. 冰川冻土, 2012, 34(4): 898-905 https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT201204018.htm

    Zhang Zhixian, Zhang Qiang, Tao Jichun, et al. Climatic and Geological Environmental Characteristics of the Exceptional Debris Flow Outburst in Zhouqu, Gansu Province, on 8 August, 2010[J]. Journal of Glaciology and Geocryology, 2012, 34(4): 898-905 https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT201204018.htm
    [14]
    刘传金, 邱江涛, 王金烁, 等. 基于升降轨Sentinel-1 SAR影像研究精河Ms6.6地震震源机制[J]. 大地测量与地球动力学, 2018, 38(11): 1 111-1 116 https://www.cnki.com.cn/Article/CJFDTOTAL-DKXB201811003.htm

    Liu Chuanjin, Qiu Jiangtao, Wang Jinshuo, et al. The 2017 Jinghe Ms6.6 Earthquake Inversion from Ascending and Descending Sentinel-1 Observations[J]. Journal of Geodesy and Geodynamics, 2018, 38(11): 1 111-1 116 https://www.cnki.com.cn/Article/CJFDTOTAL-DKXB201811003.htm
    [15]
    Chen G, Zhang Y. Detection of Land Subsidence Associated with Land Creation and Rapid Urbanization in the Chinese Loess Plateau Using Time Series InSAR: A Case Study of Lanzhou New District[J]. Remote Sensing, 2018, 10(2): 1-23 http://adsabs.harvard.edu/abs/2018RemS...10..270C
    [16]
    Berardino P, Fornaro G, Lanari R, et al. A New Algorithm for Surface Deformation Monitoring Based on Small Baseline Differential SAR Interferograms[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(11): 2 375-2 383 doi: 10.1109/TGRS.2002.803792
    [17]
    郭长宝, 任三绍, 李雪, 等. 甘肃舟曲南峪江顶崖古滑坡发育特征与复活机理[J]. 现代地质, 2019, 33(1): 206-217 https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ201901020.htm

    Guo Changbao, Ren Sanshao, Li Xue, et al. Development Characteristics and Reactivation Mechanism of the Jiangdingya Ancient Landslide in the Nanyu Town, Zhouqu County, Gansu Province[J]. Geoscience, 2019, 33(1): 206-217 https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ201901020.htm
    [18]
    蒋秀姿, 文宝萍, 蒋树, 等. 甘肃舟曲锁儿头滑坡活动的主控因素分析[J]. 吉林大学学报(地球科学版), 2015, 45(6): 1 798-1 807 https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201506020.htm

    Jiang Xiuzi, Wen Baoping, Jiang Shu, et al. Main Factors Analysis for Controlling Kinematic Behavior of Suoertou Landslide[J]. Journal of Jilin University (Earth Science Edition), 2015, 45(6): 1 798-1 807 https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201506020.htm
    [19]
    张毅. 基于InSAR技术的地表变形监测与滑坡早期识别研究[D]. 兰州: 兰州大学, 2018

    Zhang Yi. Detecting Ground Deformation and Investigating Landslides Using InSAR Technique—Taking Middle Reach of Bailong River Basin as an Example[D]. Lanzhou: Lanzhou University, 2018
    [20]
    黄晓, 杨为民, 张春山, 等. 甘肃南部坪定-化马断裂带锁儿头滑坡成因机制[J]. 地质通报, 2013, 32(12): 1 936-1 942 https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201312007.htm

    Huang Xiao, Yang Weimin, Zhang Chunshan, et al. The Formation Mechanism of Suoertou Landslide in Pingding-Huama Fault Zone, Southern Gansu[J]. Geological Bulletin of China, 2013, 32(12): 1 936-1 942 https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201312007.htm
    [21]
    李文彦, 张媛, 韩鑫, 等. 舟曲锁儿头滑坡裂缝变形特征研究[J]. 人民长江, 2013, 44(3): 33-35 doi: 10.3969/j.issn.1001-4179.2013.03.009

    Li Wenyan, Zhang Yuan, Han Xin, et al. Seismic Response of Rock Slope Considering Distribution Features of Structural Interfaces[J]. Yangtze River, 2013, 44(3): 33-35 doi: 10.3969/j.issn.1001-4179.2013.03.009
    [22]
    张翔. 甘肃舟曲锁儿头滑坡变形破坏机制及稳定性研究[D]. 成都: 成都理工大学, 2012

    Zhang Xiang. Study on Stability and Deformation Damage Mechanism of the Suoertou Landslide in Zhouqu County Gansu Province[D]. Chengdu: Chengdu University of Technology, 2012
    [23]
    陈家兴. 甘肃舟曲锁儿头滑坡失稳机制离心模型试验研究[D]. 成都: 成都理工大学, 2013

    Chen Jiaxing. The Centrifuge Model Test for the Sliding Mechanism of the Suoertou Landslide in Zhouqu County Gansu Province[D]. Chengdu: Chengdu University of Technology, 2013
    [24]
    蒋秀姿, 文宝萍. 缓慢复活型滑坡滑带土的蠕变性质与特征强度试验研究[J]. 岩土力学, 2015(2): 495-501 https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201502030.htm

    Jiang Xiuzi, Wen Baoping. Creep Behavior of Slipzone of Reactivated Slow-Moving Landslide and Its Characteristic Strength[J]. Rock and Soil Mechanics, 2015(2): 495-501 https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201502030.htm
    [25]
    杜飞. 甘肃舟曲泄流坡滑坡基本特征及其堵江预测研究[D]. 成都: 成都理工大学, 2015

    Du Fei. Study on the Basic Characteristics of the Xieliupo Landslide and the Prediction of Blocking the River in Zhouqu County Gansu[D]. Chengdu: Chengdu University of Technology, 2015
    [26]
    刘东飞, 王雄师, 杨欢, 等. 基于可靠度分析的甘肃舟曲泄流坡滑坡风险评价[J]. 山地学报, 2017, 35(3): 323-331 https://www.cnki.com.cn/Article/CJFDTOTAL-SDYA201703010.htm

    Liu Dongfei, Wang Xiongshi, Yang Huan, et al. Risk Assessment of Zhouqu Xieliupo Landslide Based on Reliability Analysis in Zhouqu County of Gansu Province[J]. Mountain Research, 2017, 35(3): 323-331 https://www.cnki.com.cn/Article/CJFDTOTAL-SDYA201703010.htm
    [27]
    康亚. InSAR技术在西南山区滑坡探测与监测的应用[D]. 西安: 长安大学, 2016

    Kang Ya. Landslide Detection and Monitoring over Southwestern Mountainous Area with InSAR[D]. Xi'an: Chang'an University, 2016
    [28]
    许强. 对地质灾害隐患早期识别相关问题的认识与思考[J]. 武汉大学学报·信息科学版, 2020, 45(11): 1 651-1 659 doi: 10.13203/j.whugis20200043

    Xu Qiang. Understanding and Consideration of Related Issues in Early Identification of Potential Geohazards[J]. Geomatics and Information Science of Wuhan University, 2020, 45(11): 1 651-1 659 doi: 10.13203/j.whugis20200043
    [29]
    李振洪, 宋闯, 余琛, 等. 卫星雷达遥感在滑坡灾害探测和监测中的应用: 挑战与对策[J]. 武汉大学学报·信息科学版, 2019, 44(7): 967-979 http://ch.whu.edu.cn/article/id/6439

    Li Zhenhong, Song Chuang, Yu Chen, et al. Application of Satellite Radar Remote Sensing to Landslide Detection and Monitoring: Challenge and Solutions[J]. Geomatics and Information Science of Wuhan University, 2019, 44(7): 967-979 http://ch.whu.edu.cn/article/id/6439
  • Related Articles

    [1]ZHAO Qingzhi, LIU Kang, LI Zufeng, YAO Wanqiang, YAO Yibin. PWV Inversion Method Based on GNSS and Non-Measured Meteorological Parameters and Accuracy Evaluation[J]. Geomatics and Information Science of Wuhan University, 2024, 49(3): 453-464. DOI: 10.13203/j.whugis20210441
    [2]DONG Chuankai, YU Facheng, ZHANG Weixing, FANG Lizhe, WEI Kangli, LOU Yidong, OU Shuyuan. Research on Improved GNSS-PWV Three Factor Threshold Rainfall Forecasting Method[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20220798
    [3]ZHAO Qingzhi, DU Zheng, WU Manyi, YAO Yibin, YAO Wanqiang. Establishment of PWV Fusion Model Using Multi-source Data[J]. Geomatics and Information Science of Wuhan University, 2022, 47(11): 1823-1831. DOI: 10.13203/j.whugis20200412
    [4]YANG Pengfei, ZHAO Qingzhi, SU Jing, YAO Yibin. Analysis of Influencing Factors and Accuracy Evaluation of PWV in the Loess Plateau[J]. Geomatics and Information Science of Wuhan University, 2022, 47(9): 1470-1478. DOI: 10.13203/j.whugis20200390
    [5]ZHANG Wenyuan, ZHENG Nanshan, ZHANG Shubi, DING Nan, QI Mingxin, WANG Hao. GNSS Water Vapor Tomography Algorithm Constrained with High Horizontal Resolution PWV Data[J]. Geomatics and Information Science of Wuhan University, 2021, 46(11): 1627-1635. DOI: 10.13203/j.whugis20210055
    [6]WANG Yong, REN Dong, LIU Yanping, LI Jiangbo. Spring PM2.5 Concentration Model in Hebei Province Based on GNSS PWV, Wind Speed and Air Pollution Observation[J]. Geomatics and Information Science of Wuhan University, 2019, 44(8): 1198-1204. DOI: 10.13203/j.whugis20170340
    [7]WANG Junjie, HE Xiufeng. Regional PWV Estimation Using GPS and NCEP CFSv2[J]. Geomatics and Information Science of Wuhan University, 2017, 42(3): 328-333. DOI: 10.13203/j.whugis20140841
    [8]ZHAO Jingyang, SONG Shuli, ZHU Wenyao. Accuracy Assessment of Applying ERA-Interim Reanalysis Data toCalculate Ground-based GPS/PWV over China[J]. Geomatics and Information Science of Wuhan University, 2014, 39(8): 935-939. DOI: 10.13203/j.whugis20120006
    [9]XU Shaoguang, XIONG Yongliang, LIU Ning, HUANG Dingfa. Real-time PWV Obtained by Ground GPS[J]. Geomatics and Information Science of Wuhan University, 2011, 36(4): 407-411.
    [10]LI Guoping, CHEN Jiaona, HAO Liping. Case Study of the Rainfall Processes in Different Cloud Systems Based on GPS-PWV Data in Chengdu Plain[J]. Geomatics and Information Science of Wuhan University, 2011, 36(4): 384-388.
  • Cited by

    Periodical cited type(4)

    1. 汤俊,钟正宇,丁明飞,吴学群. 利用PSO算法改进的ENN预报中国区域电离层TEC. 武汉大学学报(信息科学版). 2024(10): 1867-1878 .
    2. 毛志锋,刘立龙,黄良珂,韦律权,任丁,魏朋志. 桂林地区暴雨天气电离层VTEC时序预报模型适用性. 桂林理工大学学报. 2024(03): 481-488 .
    3. 李磊,张宁,尹淑慧,王轶卓. 基于残差修正的ARMA模型探测门源M_S6.4地震前电离层TEC异常. 大地测量与地球动力学. 2021(04): 382-386 .
    4. 李帅,李仲勤,寇瑞雄,李伟. 2019年印度尼西亚Mw7.1地震震前电离层扰动分析. 导航定位学报. 2020(06): 96-102+108 .

    Other cited types(6)

Catalog

    Article views (1364) PDF downloads (212) Cited by(10)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return