Citation: | ZHAO Qingzhi, DU Zheng, WU Manyi, YAO Yibin, YAO Wanqiang. Establishment of PWV Fusion Model Using Multi-source Data[J]. Geomatics and Information Science of Wuhan University, 2022, 47(11): 1823-1831. DOI: 10.13203/j.whugis20200412 |
[1] |
Zhai P, Eskridge R E. Atmospheric Water Vapor over China[J]. Journal of Climate, 1997, 10(10): 2643-2652
|
[2] |
Li Z, Muller J P, Cross P. Comparison of Precipitable Water Vapor Derived from Radiosonde, GPS, and Moderate-Resolution Imaging Spectroradiometer Measurements[J]. Journal of Geophysical Research: Atmospheres, 2003, 108(D20): 4651
|
[3] |
姚宜斌, 赵庆志, 罗亦泳. 附加虚拟信号精化水汽层析模型的方法[J]. 武汉大学学报·信息科学版, 2017, 42(11): 1658-1664 doi: 10.13203/j.whugis20150444
Yao Yibin, Zhao Qingzhi, Luo Yiyong. An Approach of Imposing Virtual Signals to Sophisticate Water Vapor Tomographic Model[J]. Geomatics and Information Science of Wuhan University, 2017, 42(11): 1658-1664 doi: 10.13203/j.whugis20150444
|
[4] |
姚宜斌, 赵庆志, 何亚东, 等. 基于水汽密度比例因子的三维水汽层析算法[J]. 测绘学报, 2016, 45(3): 260-266 https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201603003.htm
Yao Yibin, Zhao Qingzhi, He Yadong, et al. A Three-Dimensional Water Vapor Tomography Algorithm Based on the Water Vapor Density Scale Factor[J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(3): 260-266 https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201603003.htm
|
[5] |
赵庆志, 姚宜斌, 姚顽强, 等. 利用ECMWF改善射线利用率的三维水汽层析算法[J]. 测绘学报, 2018, 47(9): 1179-1187 https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201809004.htm
Zhao Qingzhi, Yao Yibin, Yao Wanqiang, et al. A Method to Improve the Utilization Rate of Satellite Rays for Three-Dimensional Water Vapor Tomography Using the ECMWF Data[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(9): 1179-1187 https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201809004.htm
|
[6] |
Zhao Q, Yao Y, Yao W Q, et al. Near-Global GPS-Derived PWV and Its Analysis in the El Niño Event of 2014—2016[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2018, 179: 69-80
|
[7] |
Wang J, Zhang L, Dai A, et al. A Near-Global, 2-Hourly Data Set of Atmospheric Precipitable Water from Ground-Based GPS Measurements[J]. Journal of Geophysical Research: Atmospheres, 2007, 112: D11107
|
[8] |
王永前, 施建成, 刘志红, 等. 利用微波辐射计AMSR-E的京津冀地区大气水汽反演[J]. 武汉大学学报·信息科学版, 2015, 40(4): 479-486 doi: 10.13203/j.whugis20130530
Wang Yongqian, Shi Jiancheng, Liu Zhihong, et al. Passive Microwave Remote Sensing of Precipitable Water Vapor over Beijing-Tianjin-Hebei Region Based on AMSR-E[J]. Geomatics and Information Science of Wuhan University, 2015, 40(4): 479-486 doi: 10.13203/j.whugis20130530
|
[9] |
Chen B, Liu Z. Global Water Vapor Variability and Trend from the Latest 36 Year (1979 to 2014) Data of ECMWF and NCEP Reanalyses, Radiosonde, GPS, and Microwave Satellite[J]. Journal of Geophysical Research: Atmospheres, 2016, 121(19): 11442-11462
|
[10] |
Sherwood S C, Roca R, Weckwerth T M, et al. Tropospheric Water Vapor, Convection, and Climate[J]. Reviews of Geophysics, 2010, 48(2): RG2001
|
[11] |
Niell A E, Coster A J, Solheim F S, et al. Comparison of Measurements of Atmospheric Wet Delay by Radiosonde, Water Vapor Radiometer, GPS, and VLBI[J]. Journal of Atmospheric and Oceanic Technology, 2001, 18(6): 830-850
|
[12] |
Nilsson T, Elgered G. Long-Term Trends in the Atmospheric Water Vapor Content Estimated from Ground-Based GPS Data[J]. Journal of Geophysical Research: Atmospheres, 2008, 113: D19101
|
[13] |
Wang Y, Liu Y, Liu L, et al. Retrieval of the Change of Precipitable Water Vapor with Zenith Tropospheric Delay in the Chinese Mainland[J]. Advances in Space Research, 2009, 43(1): 82-88
|
[14] |
Zhang B, Yao Y, Xin L, et al. Precipitable Water Vapor Fusion: An Approach Based on Spherical Cap Harmonic Analysis and Helmert Variance Component Estimation[J]. Journal of Geodesy, 2019, 93(12): 1-16
|
[15] |
赵庆志, 姚宜斌, 罗亦泳. 附加辅助层析区域提高射线利用率的水汽反演方法[J]. 武汉大学学报·信息科学版, 2017, 42(9): 1203-1208 doi: 10.13203/j.whugis20150592
Zhao Qingzhi, Yao Yibin, Luo Yiyong. A Method to Improve the Utilization of Observation for Water Vapor Tomography by Adding Assisted Tomographic Area[J]. Geomatics and Information Science of Wuhan University, 2017, 42(9): 1203-1208 doi: 10.13203/j.whugis20150592
|
[16] |
Yao Y, Xu X, Hu Y. Establishment of a Regional Precipitable Water Vapor Model Based on the Combination of GNSS and ECMWF Data[J]. Atmospheric Measurement Techniques Discussions, 2018, 15(3): 1-21
|
[17] |
Yao Y, Xu X, Xu C, et al. Establishment of a Real-Time Local Tropospheric Fusion Model[J]. Remote Sensing, 2019, 11: 1321 http://www.researchgate.net/publication/333533613_Establishment_of_a_Real-Time_Local_Tropospheric_Fusion_Model
|
[18] |
徐祥德, 陶诗言, 王继志, 等. 青藏高原-季风水汽输送"大三角扇型"影响域特征与中国区域旱涝异常的关系[J]. 气象学报, 2004, 60(3): 257-266 https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB200203000.htm
Xu Xiangde, Tao Shiyan, Wang Jizhi, et al. The Relationship Between Water Vapor Transport Features of Tibetan Plateau-Monsoon "Large Triangle Affecting Region and Drought-Flood Abnormality of China"[J]. Acta Meteorologica Sinica, 2004, 60(3): 257-266 https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB200203000.htm
|
[19] |
Zhao Q, Yao Y, Cao X, et al. An Optimal Tropospheric Tomography Method Based on the Multi-GNSS Observations[J]. Remote Sensing, 2018, 10(2): 234
|
[20] |
Zhang W, Lou Y, Haase J S, et al. The Use of Ground-Based GPS Precipitable Water Measurements Over China to Assess Radiosonde and ERA-Interim Moisture Trends and Errors from 1999 to 2015[J]. Journal of Climate, 2017, 30(19): 7643-7667
|
[21] |
Saastamoinen J. Atmospheric Correction for the Troposphere and Stratosphere in Radio Ranging Satellites[J]. The Use of Artificial Satellites for Geodesy, 1972, 15: 247-251
|
[22] |
Böhm J, Möller G, Schindelegger M, et al. Development of an Improved Empirical Model for Slant Delays in the Troposphere (GPT2w)[J]. GPS Solutions, 2015, 19(3): 433-441
|
[23] |
Askne J, Nordius H. Estimation of Tropospheric Delay for Microwaves from Surface Weather Data[J]. Radio Science, 1987, 22(3): 379-386
|
[24] |
Liu J, Chen R, Wang Z, et al. Spherical Cap Harmonic Model for Mapping and Predicting Regional TEC[J]. GPS Solutions, 2011, 15(2): 109-119
|
[25] |
Hernández-Pajares M, Lyu H, Aragón-Àngel À, et al. Polar Electron Content from GPS- Data-Based Global Ionospheric Maps: Assessment, Case Studies, and Climatology[J]. Journal of Geophysical Research: Space Physics, 2020, 125(6): e2019JA027677
|
[26] |
Zhao Q, Yang P, Yao W, et al. Hourly PWV Dataset Derived from GNSS Observations in China[J]. Sensors, 2019, 20(1): 231
|
[27] |
Wong T T. Performance Evaluation of Classification Algorithms by K-Fold and Leave-One-Out Cross Validation[J]. Pattern Recognition, 2015, 48(9): 2839-2846
|
[28] |
Yuan Y, Zhang K, Rohm W, et al. Real-Time Retrieval of Precipitable Water Vapor from GPS Precise Point Positioning[J]. Journal of Geophysical Research: Atmospheres, 2014, 119(16): 10044-10057
|
[29] |
Ferreira J E, Pinheiro M T, Santos W R, et al. Graphical Representation of Chemical Periodicity of Main Elements Through Boxplot[J]. Educación Química, 2016, 27(3): 209-216
|
[1] | GONG Xuewen, WANG Fuhong. Impact of Multipath Error and Noise of Space-Borne GPS Code Measurements on Real-Time Onboard Orbit Determination[J]. Geomatics and Information Science of Wuhan University, 2018, 43(7): 1048-1055. DOI: 10.13203/j.whugis20160223 |
[2] | GONG Xuewen, WANG Fuhong. Autonomous Orbit Determination of HY2A and ZY3 Missions Using Space-borne GPS Measurements[J]. Geomatics and Information Science of Wuhan University, 2017, 42(3): 309-313. DOI: 10.13203/j.whugis20140892 |
[3] | ZHOU Xuhua, WANG Xiaohui, ZHAO Gang, PENG Hailong, WU Bin. The Precise Orbit Determination for HY2A Satellite Using GPS,DORIS and SLR Data[J]. Geomatics and Information Science of Wuhan University, 2015, 40(8): 1000-1005. DOI: 10.13203/j.whugis20130730 |
[4] | MA Yang, OU Jikun, YUAN Yunbin, HUO Xingliang, DING Wenwu. Estimation of GPS Antenna Phase Center Variation and Its Effect on Precise Orbit Determination of LEOs[J]. Geomatics and Information Science of Wuhan University, 2015, 40(7): 894-900. DOI: 10.13203/j.whugis20130626 |
[5] | QIN Jian, GUO Jinyun, KONG Qiaoli, LI Guowei. Precise Orbit Determination of Jason-2with Precision of CentimetersBased on Satellite-borne GPS Technique[J]. Geomatics and Information Science of Wuhan University, 2014, 39(2): 137-141. DOI: 10.13203/j.whugis20120686 |
[6] | WANG Fuhong, XU Qichao, GONG Xuewen, ZHANG Wei. Application of a Gravity Acceleration Approximation Function in the PreciseReal-Time Orbit Determination Using Space-borne GPS Measurements[J]. Geomatics and Information Science of Wuhan University, 2014, 39(1): 47-51. |
[7] | LI Wenwen, LI Min, SHI Chuang, ZHAO Qile. Jason-2 Precise Orbit Determination Using DORIS RINEX Phase Data[J]. Geomatics and Information Science of Wuhan University, 2013, 38(10): 1207-1211. |
[8] | GUO Jing, ZHAO Qile, LI Min, HU Zhigang. Centimeter Level Orbit Determination for HY2A Using GPS Data[J]. Geomatics and Information Science of Wuhan University, 2013, 38(1): 52-55. |
[9] | WANG Fuhong. A Kalman Filtering Algorithm for Precision Real-Time Orbit Determination with Space-Borne GPS Measurements[J]. Geomatics and Information Science of Wuhan University, 2010, 35(6): 653-656. |
[10] | GENG Jianghui, SHI Chuang, ZHAO Qile, LIU Jingnan. GPS Precision Orbit Determination from Combined Ground and Space-borne Data[J]. Geomatics and Information Science of Wuhan University, 2007, 32(10): 906-909. |
1. |
高贤君,冉树浩,张广斌,杨元维. 基于多特征融合与对象边界联合约束网络的建筑物提取. 武汉大学学报(信息科学版). 2024(03): 355-365 .
![]() |