ZHAO Qingzhi, DU Zheng, WU Manyi, YAO Yibin, YAO Wanqiang. Establishment of PWV Fusion Model Using Multi-source Data[J]. Geomatics and Information Science of Wuhan University, 2022, 47(11): 1823-1831. DOI: 10.13203/j.whugis20200412
Citation: ZHAO Qingzhi, DU Zheng, WU Manyi, YAO Yibin, YAO Wanqiang. Establishment of PWV Fusion Model Using Multi-source Data[J]. Geomatics and Information Science of Wuhan University, 2022, 47(11): 1823-1831. DOI: 10.13203/j.whugis20200412

Establishment of PWV Fusion Model Using Multi-source Data

Funds: 

The Local Special Scientific Research Plan of Shaanxi Provincial Department of Education 22JE012

China Postdoctoral Science Foundation of Special Funded (Station) 2022T150523

the National Natural Science Foundation of China 42274039

More Information
  • Author Bio:

    ZHAO Qingzhi, PhD, associate professor, specializes in GNSS data processing and GNSS meteorology. E-mail: zhaoqingzhia@163.com

  • Received Date: November 07, 2020
  • Available Online: November 15, 2022
  • Published Date: November 04, 2022
  •   Objectives  Precipitable water vapor (PWV) information with high precision and high spatial-temporal resolution plays an important role in the study of extreme weather. The PWV obtained by traditional single water vapor detection technology has the defects of poor precision and low spatial-temporal resolution due to the limitations of its system design.
      Methods  To solve this problem, we propose a PWV hybrid model based on multi-source data, called the GSP(GPT2w+spherical harmonical function+polynomial fitting) model.In this model, the initial value of PWV is calculated by the GPT2w model, the residual sequence of PWV is fitted by a spherical harmonic function, and after that, deviation correction is performed for the residual PWV based on the polynomial fitting, and the Bartlett test is introduced to deter mine the optimal weights of multi-source data in the GSP model.
      Results  The data of 26 GNSS stations and 37 ERA-Interim grid points (1°×1°) in Yunnan Province, China has been selected to validate the GSP model, and the numerical results show that the accuracy improvement rate of the GSP model is 15%— 18% compared with the traditional polynomial fitting model. Compared with the ERA5 (0.25°×0.25°) data, the mean root mean square and Bias of GSP model are 1.64 mm and -0.25 mm, respectively.
      Conclusions  The above results show that the proposed GSP model has high accuracy and plays an important role in extreme weather warnings.
  • [1]
    Zhai P, Eskridge R E. Atmospheric Water Vapor over China[J]. Journal of Climate, 1997, 10(10): 2643-2652
    [2]
    Li Z, Muller J P, Cross P. Comparison of Precipitable Water Vapor Derived from Radiosonde, GPS, and Moderate-Resolution Imaging Spectroradiometer Measurements[J]. Journal of Geophysical Research: Atmospheres, 2003, 108(D20): 4651
    [3]
    姚宜斌, 赵庆志, 罗亦泳. 附加虚拟信号精化水汽层析模型的方法[J]. 武汉大学学报·信息科学版, 2017, 42(11): 1658-1664 doi: 10.13203/j.whugis20150444

    Yao Yibin, Zhao Qingzhi, Luo Yiyong. An Approach of Imposing Virtual Signals to Sophisticate Water Vapor Tomographic Model[J]. Geomatics and Information Science of Wuhan University, 2017, 42(11): 1658-1664 doi: 10.13203/j.whugis20150444
    [4]
    姚宜斌, 赵庆志, 何亚东, 等. 基于水汽密度比例因子的三维水汽层析算法[J]. 测绘学报, 2016, 45(3): 260-266 https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201603003.htm

    Yao Yibin, Zhao Qingzhi, He Yadong, et al. A Three-Dimensional Water Vapor Tomography Algorithm Based on the Water Vapor Density Scale Factor[J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(3): 260-266 https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201603003.htm
    [5]
    赵庆志, 姚宜斌, 姚顽强, 等. 利用ECMWF改善射线利用率的三维水汽层析算法[J]. 测绘学报, 2018, 47(9): 1179-1187 https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201809004.htm

    Zhao Qingzhi, Yao Yibin, Yao Wanqiang, et al. A Method to Improve the Utilization Rate of Satellite Rays for Three-Dimensional Water Vapor Tomography Using the ECMWF Data[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(9): 1179-1187 https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201809004.htm
    [6]
    Zhao Q, Yao Y, Yao W Q, et al. Near-Global GPS-Derived PWV and Its Analysis in the El Niño Event of 2014—2016[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2018, 179: 69-80
    [7]
    Wang J, Zhang L, Dai A, et al. A Near-Global, 2-Hourly Data Set of Atmospheric Precipitable Water from Ground-Based GPS Measurements[J]. Journal of Geophysical Research: Atmospheres, 2007, 112: D11107
    [8]
    王永前, 施建成, 刘志红, 等. 利用微波辐射计AMSR-E的京津冀地区大气水汽反演[J]. 武汉大学学报·信息科学版, 2015, 40(4): 479-486 doi: 10.13203/j.whugis20130530

    Wang Yongqian, Shi Jiancheng, Liu Zhihong, et al. Passive Microwave Remote Sensing of Precipitable Water Vapor over Beijing-Tianjin-Hebei Region Based on AMSR-E[J]. Geomatics and Information Science of Wuhan University, 2015, 40(4): 479-486 doi: 10.13203/j.whugis20130530
    [9]
    Chen B, Liu Z. Global Water Vapor Variability and Trend from the Latest 36 Year (1979 to 2014) Data of ECMWF and NCEP Reanalyses, Radiosonde, GPS, and Microwave Satellite[J]. Journal of Geophysical Research: Atmospheres, 2016, 121(19): 11442-11462
    [10]
    Sherwood S C, Roca R, Weckwerth T M, et al. Tropospheric Water Vapor, Convection, and Climate[J]. Reviews of Geophysics, 2010, 48(2): RG2001
    [11]
    Niell A E, Coster A J, Solheim F S, et al. Comparison of Measurements of Atmospheric Wet Delay by Radiosonde, Water Vapor Radiometer, GPS, and VLBI[J]. Journal of Atmospheric and Oceanic Technology, 2001, 18(6): 830-850
    [12]
    Nilsson T, Elgered G. Long-Term Trends in the Atmospheric Water Vapor Content Estimated from Ground-Based GPS Data[J]. Journal of Geophysical Research: Atmospheres, 2008, 113: D19101
    [13]
    Wang Y, Liu Y, Liu L, et al. Retrieval of the Change of Precipitable Water Vapor with Zenith Tropospheric Delay in the Chinese Mainland[J]. Advances in Space Research, 2009, 43(1): 82-88
    [14]
    Zhang B, Yao Y, Xin L, et al. Precipitable Water Vapor Fusion: An Approach Based on Spherical Cap Harmonic Analysis and Helmert Variance Component Estimation[J]. Journal of Geodesy, 2019, 93(12): 1-16
    [15]
    赵庆志, 姚宜斌, 罗亦泳. 附加辅助层析区域提高射线利用率的水汽反演方法[J]. 武汉大学学报·信息科学版, 2017, 42(9): 1203-1208 doi: 10.13203/j.whugis20150592

    Zhao Qingzhi, Yao Yibin, Luo Yiyong. A Method to Improve the Utilization of Observation for Water Vapor Tomography by Adding Assisted Tomographic Area[J]. Geomatics and Information Science of Wuhan University, 2017, 42(9): 1203-1208 doi: 10.13203/j.whugis20150592
    [16]
    Yao Y, Xu X, Hu Y. Establishment of a Regional Precipitable Water Vapor Model Based on the Combination of GNSS and ECMWF Data[J]. Atmospheric Measurement Techniques Discussions, 2018, 15(3): 1-21
    [17]
    Yao Y, Xu X, Xu C, et al. Establishment of a Real-Time Local Tropospheric Fusion Model[J]. Remote Sensing, 2019, 11: 1321 http://www.researchgate.net/publication/333533613_Establishment_of_a_Real-Time_Local_Tropospheric_Fusion_Model
    [18]
    徐祥德, 陶诗言, 王继志, 等. 青藏高原-季风水汽输送"大三角扇型"影响域特征与中国区域旱涝异常的关系[J]. 气象学报, 2004, 60(3): 257-266 https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB200203000.htm

    Xu Xiangde, Tao Shiyan, Wang Jizhi, et al. The Relationship Between Water Vapor Transport Features of Tibetan Plateau-Monsoon "Large Triangle Affecting Region and Drought-Flood Abnormality of China"[J]. Acta Meteorologica Sinica, 2004, 60(3): 257-266 https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB200203000.htm
    [19]
    Zhao Q, Yao Y, Cao X, et al. An Optimal Tropospheric Tomography Method Based on the Multi-GNSS Observations[J]. Remote Sensing, 2018, 10(2): 234
    [20]
    Zhang W, Lou Y, Haase J S, et al. The Use of Ground-Based GPS Precipitable Water Measurements Over China to Assess Radiosonde and ERA-Interim Moisture Trends and Errors from 1999 to 2015[J]. Journal of Climate, 2017, 30(19): 7643-7667
    [21]
    Saastamoinen J. Atmospheric Correction for the Troposphere and Stratosphere in Radio Ranging Satellites[J]. The Use of Artificial Satellites for Geodesy, 1972, 15: 247-251
    [22]
    Böhm J, Möller G, Schindelegger M, et al. Development of an Improved Empirical Model for Slant Delays in the Troposphere (GPT2w)[J]. GPS Solutions, 2015, 19(3): 433-441
    [23]
    Askne J, Nordius H. Estimation of Tropospheric Delay for Microwaves from Surface Weather Data[J]. Radio Science, 1987, 22(3): 379-386
    [24]
    Liu J, Chen R, Wang Z, et al. Spherical Cap Harmonic Model for Mapping and Predicting Regional TEC[J]. GPS Solutions, 2011, 15(2): 109-119
    [25]
    Hernández-Pajares M, Lyu H, Aragón-Àngel À, et al. Polar Electron Content from GPS- Data-Based Global Ionospheric Maps: Assessment, Case Studies, and Climatology[J]. Journal of Geophysical Research: Space Physics, 2020, 125(6): e2019JA027677
    [26]
    Zhao Q, Yang P, Yao W, et al. Hourly PWV Dataset Derived from GNSS Observations in China[J]. Sensors, 2019, 20(1): 231
    [27]
    Wong T T. Performance Evaluation of Classification Algorithms by K-Fold and Leave-One-Out Cross Validation[J]. Pattern Recognition, 2015, 48(9): 2839-2846
    [28]
    Yuan Y, Zhang K, Rohm W, et al. Real-Time Retrieval of Precipitable Water Vapor from GPS Precise Point Positioning[J]. Journal of Geophysical Research: Atmospheres, 2014, 119(16): 10044-10057
    [29]
    Ferreira J E, Pinheiro M T, Santos W R, et al. Graphical Representation of Chemical Periodicity of Main Elements Through Boxplot[J]. Educación Química, 2016, 27(3): 209-216
  • Related Articles

    [1]GONG Xuewen, WANG Fuhong. Impact of Multipath Error and Noise of Space-Borne GPS Code Measurements on Real-Time Onboard Orbit Determination[J]. Geomatics and Information Science of Wuhan University, 2018, 43(7): 1048-1055. DOI: 10.13203/j.whugis20160223
    [2]GONG Xuewen, WANG Fuhong. Autonomous Orbit Determination of HY2A and ZY3 Missions Using Space-borne GPS Measurements[J]. Geomatics and Information Science of Wuhan University, 2017, 42(3): 309-313. DOI: 10.13203/j.whugis20140892
    [3]ZHOU Xuhua, WANG Xiaohui, ZHAO Gang, PENG Hailong, WU Bin. The Precise Orbit Determination for HY2A Satellite Using GPS,DORIS and SLR Data[J]. Geomatics and Information Science of Wuhan University, 2015, 40(8): 1000-1005. DOI: 10.13203/j.whugis20130730
    [4]MA Yang, OU Jikun, YUAN Yunbin, HUO Xingliang, DING Wenwu. Estimation of GPS Antenna Phase Center Variation and Its Effect on Precise Orbit Determination of LEOs[J]. Geomatics and Information Science of Wuhan University, 2015, 40(7): 894-900. DOI: 10.13203/j.whugis20130626
    [5]QIN Jian, GUO Jinyun, KONG Qiaoli, LI Guowei. Precise Orbit Determination of Jason-2with Precision of CentimetersBased on Satellite-borne GPS Technique[J]. Geomatics and Information Science of Wuhan University, 2014, 39(2): 137-141. DOI: 10.13203/j.whugis20120686
    [6]WANG Fuhong, XU Qichao, GONG Xuewen, ZHANG Wei. Application of a Gravity Acceleration Approximation Function in the PreciseReal-Time Orbit Determination Using Space-borne GPS Measurements[J]. Geomatics and Information Science of Wuhan University, 2014, 39(1): 47-51.
    [7]LI Wenwen, LI Min, SHI Chuang, ZHAO Qile. Jason-2 Precise Orbit Determination Using DORIS RINEX Phase Data[J]. Geomatics and Information Science of Wuhan University, 2013, 38(10): 1207-1211.
    [8]GUO Jing, ZHAO Qile, LI Min, HU Zhigang. Centimeter Level Orbit Determination for HY2A Using GPS Data[J]. Geomatics and Information Science of Wuhan University, 2013, 38(1): 52-55.
    [9]WANG Fuhong. A Kalman Filtering Algorithm for Precision Real-Time Orbit Determination with Space-Borne GPS Measurements[J]. Geomatics and Information Science of Wuhan University, 2010, 35(6): 653-656.
    [10]GENG Jianghui, SHI Chuang, ZHAO Qile, LIU Jingnan. GPS Precision Orbit Determination from Combined Ground and Space-borne Data[J]. Geomatics and Information Science of Wuhan University, 2007, 32(10): 906-909.
  • Cited by

    Periodical cited type(1)

    1. 高贤君,冉树浩,张广斌,杨元维. 基于多特征融合与对象边界联合约束网络的建筑物提取. 武汉大学学报(信息科学版). 2024(03): 355-365 .

    Other cited types(0)

Catalog

    Article views (941) PDF downloads (134) Cited by(1)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return