Early Detection of Landslides in the Upstream and Downstream Areas of the Baige Landslide, the Jinsha River Based on Optical Remote Sensing and InSAR Technologies
-
摘要: 2018-10-11和2018-11-03,金沙江上游西藏自治区江达县波罗乡白格村附近先后发生两次大规模高位滑坡堵江。虽经人工干预处置后进行泄流,但还是对下游居民和交通设施造成了严重损失,其上下游是否还存在类似的大规模滑坡隐患,成为白格滑坡灾害发生后社会各界关注的焦点问题。首先利用高精度光学卫星影像对白格滑坡上游30 km和下游100 km范围内的滑坡隐患进行人工目视解译和定性评价,共识别出滑坡隐患51处,其中下游70~100 km范围内有10处具有堵江风险的滑坡隐患。在此基础上,对具有堵江风险的重点区域(白格滑坡下游70~100 km范围内)收集存档ALOS PALSAR-1和Sentinel-1A雷达卫星数据,利用短基线差分干涉测量技术开展滑坡隐患地表形变定量探测和分析评价,共探测出7处具有较显著形变的滑坡隐患,其中3处堵江风险较大,为白格滑坡上下游地质灾害防治和川藏铁路选线提供了参考。
-
关键词:
- 金沙江 /
- 白格滑坡 /
- 光学遥感 /
- 短基线差分干涉测量技术 /
- 早期识别
Abstract: On October 11 and November 3, 2018, two large-scale landslides occurred in the upstream of the Jinsha River near the Baige Village, Polo Town, Jiangda County, Tibet Autonomous Region. Although the drainage was carried out by manual intervention, it still caused severe losses to the residents and transportation facilities in the downstream. Whether there are similar large-scale potential landslides in the upstream and downstream of the Jinsha River has become the social focus issue after the Baige Landslide disaster occurred. Firstly, high-resolution optical satellite images are used to interpret and qualitatively evaluate the potential landslide hazards in the upstream of the Baige Landslide within 30 km and the downstream of the Baige Landslide within 100 km. A total of 51 potential landslides are identified, of which 10 potential landslides in the downstream of the Baige Landslide within 70-100 km have the risk of blocking the river. On this basis, the ALOS PALSAR-1 and Sentinel-1A radar satellite data are collected in the key area (70-100 km downstream of the Baige Landslide) with the risk of river blockage. The quantitative detection and analysis of the potential surface deformation of landslides are carried out by using the small baseline subsets interferometric synthetic aperture radar (SBAS-InSAR). Seven potential landslides are detected to have significant deformation, of which three are at higher risk of river blockage. The research results have been submitted to the Ministry of Emergency Management, Sichuan Natural Resources Department, China Railway Second Academy Engineering Group Co. Ltd. and other departments and units, providing a reference for the prevention and control of geological hazards in the upstream and downstream of the Baige Landslide and the route selection of Sichuan-Tibet railway. -
-
表 1 卫星SAR影像数据基本参数信息
Table 1 Basic Parameters of the Satellite SAR Image Datasets
参数 SAR传感器 ALOS PALSAR-1 Sentinel-1A 轨道方向 升轨 升轨/降轨 所处波段 L C 雷达波长/cm 23.6 5.6 空间分辨率/m 10 15 重访周期/d 46 12 侧视角/(°) 34 39.5 影像时间 2007-12—2009-02 2017-12—2018-12/2018-01—2018-12 影像数量/景 9 29/25 表 2 光学遥感解译出的具有堵江风险的滑坡隐患
Table 2 Landslides with the Risk of Blocking River Identified by Optical Remote Sensing Interpretation
编号 经度 纬度 长度/m 宽度/m 面积/m2 遥感解译信息 H28 98°55' 28.483" 30°36' 16.511" 830 380 360 641 古滑坡堆积体,目前前缘局部可见较明显变形,具有整体失稳可能,堵江风险较大 H29 98°55' 58.402" 30°36' 0.844" 1 000 420 413 967 古滑坡堆积体,目前前缘局部可见较明显变形,具有局部失稳可能,有堵江风险 H31 98°55' 31.763" 30°34' 41.361" 660 1 200 656 833 岩质滑坡,滑坡后缘拉裂缝非常明显,具有整体失稳可能,堵江风险大 H34 98°55' 50.899" 30°33' 53.606" 630 360 214 908 岩质滑坡,滑坡后缘发育多级拉裂缝,变形显著,具有局部失稳可能,堵江风险大 H36 98°56' 1.333" 30°32' 34.017" 260 260 65 097 岩质滑坡,滑坡后缘拉裂缝非常明显,具有局部失稳可能,有堵江风险 H37 98°55' 52.126" 30°32' 20.109" 260 290 79 742 岩质滑坡,滑坡后缘拉裂缝非常明显,具有局部失稳可能,有堵江风险 H44 98°56' 53.375" 30°28' 8.206" 270 330 105 973 岩质滑坡,滑坡后缘拉裂缝明显,具有局部失稳可能,有堵江风险 H46 98°57' 25.383" 30°27' 38.027" 380 210 76 569 岩质滑坡,滑坡后缘拉裂缝非常明显,具有局部失稳可能,有堵江风险 H47 98°57' 34.651" 30°26' 35.196" 860 290 239 179 岩质滑坡,滑坡后缘拉裂缝明显,具有局部失稳可能,有堵江风险 H48 98°57' 48.631" 30°25' 37.207" 190 210 42 587 岩质滑坡,滑坡后缘拉裂缝非常明显,具有局部失稳可能,有堵江风险 注:H28、H31、H34表示堵江风险高的滑坡隐患点,其他点表示有堵江风险的滑坡隐患点 -
[1] 许强, 郑光, 李为乐, 等. 2018年10月和11月金沙江白格两次滑坡-堰塞堵江事件分析研究[J].工程地质学报, 2018, 26(6):1534-1551 http://d.old.wanfangdata.com.cn/Periodical/gcdzxb201806017 Xu Qiang, Zheng Guang, Li Weile, et al. Study on Successive Landslide Damming Events of Jinsha River in Baige Village of Octorber 11 and November 3, 2018[J]. Journal of Engineering Geology, 2018, 26(6):1534-1551 http://d.old.wanfangdata.com.cn/Periodical/gcdzxb201806017
[2] 柴贺军, 刘汉超, 张倬元.中国滑坡堵江的类型及其特点[J].成都理工大学学报(自然科学版), 1998, 25(3):411-416 http://www.cqvip.com/QK/91405A/199803/3158929.html Chai Hejun, Liu Hanchao, Zhang Zhuoyuan. Study on the Categories of Landslide-Damming of Rivers and Their Characteristics[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 1998, 25(3):411-416 http://www.cqvip.com/QK/91405A/199803/3158929.html
[3] 许强, 李为乐, 董秀军, 等.四川茂县叠溪镇新磨村滑坡特征与成因机制初步研究[J].岩石力学与工程学报, 2017, 36(11):2612-2628 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yslxygcxb201711002 Xu Qiang, Li Weile, Dong Xiujun, et al. The Xinmocun Landslide on June 24, 2017 in Maoxian, Sichuan:Characteristics and Failure Mechanism[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(11):2612-2628 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yslxygcxb201711002
[4] 许强, 董秀军, 李为乐.基于天-空-地一体化的重大地质灾害隐患早期识别与监测预警[J].武汉大学学报·信息科学版, 2019, 44(7):957-966 http://ch.whu.edu.cn/CN/abstract/abstract6438.shtml Xu Qiang, Dong Xiujun, Li Weile. Integrated Space-Air-Ground Early Detection, Monitoring and Warning System for Potential Catastrophic Geohazards[J]. Geomatics and Information Science of Wuhan University, 2019, 44(7):957-966 http://ch.whu.edu.cn/CN/abstract/abstract6438.shtml
[5] Ouyang C J, Zhao W, Xu Q, et al. Failure Mechanisms and Characteristics of the 2016 Catastrophic Rockslide at Su Village, Lishui, China[J]. Landslides, 2018, 15(7):1391-1400 doi: 10.1007/s10346-018-0985-1
[6] Fan X M, Xu Q, Scaringi G, et al. Failure Mechanism and Kinematics of the Deadly June 24th 2017 Xinmo Landslide, Maoxian, Sichuan, China[J]. Landslides, 2017, 14(6):2129-2146 doi: 10.1007/s10346-017-0907-7
[7] Intrieri E, Raspini F, Fumagalli A, et al. The Maoxian Landslide as Seen from Space:Detecting Precursors of Failure with Sentinel-1 Data[J]. Landslides, 2018, 15(1):123-133 doi: 10.1007/s10346-017-0915-7
[8] 郑光, 许强, 巨袁臻, 等. 2017年8月28日贵州纳雍县张家湾镇普洒村崩塌特征与成因机理研究[J].工程地质学报, 2018, 26(1):223-240 http://d.old.wanfangdata.com.cn/Periodical/gcdzxb201801024 Zheng Guang, Xu Qiang, Ju Yuanzhen, et al. The Pusacun Rockavalanche on August 28, 2017 in Zhangjiawan Nayongxian, Guizhou:Characteristics and Failure Mechanism[J]. Journal of Engineering Geology, 2018, 26(1):223-240 http://d.old.wanfangdata.com.cn/Periodical/gcdzxb201801024
[9] Jie D, Liao M, Qiang X, et al. Detection and Displacement Characterization of Landslides Using Multi-temporal Satellite SAR Interferometry:A Case Study of Danba County in the Dadu River Basin[J]. Engineering Geology, 2018, 240(5):94-109
[10] 张路, 廖明生, 董杰, 等.基于时间序列InSAR分析的西部山区滑坡灾害隐患早期识别——以四川丹巴为例[J].武汉大学学报·信息科学版, 2018, 43(12):2039-2049 http://ch.whu.edu.cn/CN/abstract/abstract6288.shtml Zhang Lu, Liao Mingsheng, Dong Jie, et al. Early Dectection of Landslide Hazards in Mountainous Areas of West China Using Time Series SAR Interferometry-A Case Study of Danba, Sichuan[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12):2039-2049 http://ch.whu.edu.cn/CN/abstract/abstract6288.shtml
[11] Gagon H. Remote Sensing of Landslides Hazards on Quick Clays of Eastern Canada[C]. The 10th International Symposium of Remote Sensing of Enviroment, Environmental Research Institute of Michigan, Ann Arbor, USA, 1975
[12] McDonald H C, Grubbs R S. Landsat Imagery Analysis: An Aid for Predicting Landslide Prone Areas for Highway Construction[C]. NASA Earth Resource Symposium, Houston, Texas, USA, 1975
[13] Sauchyn D J, Trench N R. Landsat Applied to Landslide Mapping[J]. Photogrammetric Engineering and Remote Sensing, 1978, 44(6):735-741
[14] Stephens P R. Use of Satellite Data to Map Landslide[C]. The 9th Asian Conference on Remote Sensing, Bangkok, Thailand, 1988
[15] Nichol J E, Shaker A, Wong M S. Application of High Resolution Stereo Satellite Images to Detailed Landslide Hazard Assessment[J]. Geomorphology, 2006, 76(1-2):68-75 doi: 10.1016/j.geomorph.2005.10.001
[16] 王志勇, 张金芝.基于InSAR技术的滑坡灾害监测[J].大地测量与地球动力学, 2013, 33(3):87-91 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dkxbydz201303020 Wang Zhiyong, Zhang Jinzhi. Landslide Monitoring Based on InSAR Technique[J]. Journal of Geodesy and Geodynamics, 2013, 33(3):87-91 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dkxbydz201303020
[17] Rosen P A, Hensley S, Joughin I R, et al. Synthetic Aperture Radar Interferometry[J]. Proc of the IEEE, 2000, 88(3):333-382 doi: 10.1109/5.838084
[18] 廖明生, 王腾.时间序列InSAR技术与应用[M].北京:科学出版社, 2014 Liao Mingsheng, Wang Teng. Time Series InSAR Technology and Its Applications[M]. Beijing:Science Press, 2014
[19] Colesanti C, Ferretti A, Prati C, et al. Monitoring Landslides and Tectonic Motions with the Permanent Scatterers Technique[J]. Engineering Geology, 2003, 68(1-2):3-14 doi: 10.1016/S0013-7952(02)00195-3
[20] Colesanti C, Wasowski J. Investigating Landslides with Space-Borne Synthetic Aperture Radar (SAR) Interferometry[J]. Engineering Geology, 2006, 88(3):173-199 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=76e04e80aa3b1d5c4a0e9e7422064125
[21] Bayer B, Simoni A, Mulas M, et al. Deformation Responses of Slow Moving Landslides to Seasonal Rainfall in the Northern Apennines, Measured by InSAR[J]. Geomorphology, 2018, 308:293-306 doi: 10.1016/j.geomorph.2018.02.020
[22] Zhang Y, Meng X, Chen G, et al. Detection of Geohazards in the Bailong River Basin Using Synthetic Aperture Radar Interferometry[J]. Landslides, 2016, 13(5):1273-1284 doi: 10.1007/s10346-015-0660-8
[23] 廖明生, 张路, 史绪国, 等.滑坡变形雷达遥感监测方法与实践[M].北京:科学出版社, 2017 Liao Mingsheng, Zhang Lu, Shi Xuguo, et al. Methodology and Practice of Landslide Deformation Monitoring with SAR Remote Sensing[M]. Beijing:Science Press, 2017
[24] Fruneau B, Achache J, Delacourt C. Observation and Modeling of the Saint-Etienne-de-Tinée Landslide Using SAR Interferometry[J]. Tectonophysics, 1996, 265:181-190 doi: 10.1016/S0040-1951(96)00047-9
[25] Hilley G E, Bürgmann R, Ferretti A, et al. Dynamics of Slow-Moving Landslides from Permanent Scatterer Analysis[J]. Science, 2004, 304(5679):1952-1955 doi: 10.1126/science.1098821
[26] Strozzi T, Farina P, Corsini A, et al. Survey and Monitoring of Landslide Displacements by Means of L-band Satellite SAR Interferometry[J]. Landslides, 2005, 2(3):193-201 doi: 10.1007/s10346-005-0003-2
[27] Liao M, Tang J, Wang T, et al. Landslide Monitoring with High-Resolution SAR Data in the Three Gorges Region[J]. Science China:Earth Sciences, 2012, 55(4):590-601 doi: 10.1007/s11430-011-4259-1
[28] Zhao C, Lu Z, Zhang Q, et al. Large-Area Landslide Detection and Monitoring with ALOS/PALSAR Imagery Data over Northern California and Southern Oregon, USA[J]. Remote Sensing of Environment, 2012, 124:348-359 doi: 10.1016/j.rse.2012.05.025
[29] Dai K R, Li Z H, Tomás R, et al. Monitoring Activity at the Daguangbao Mega-Landslide (China) Using Sentinel-1 TOPS Time Series Interferometry[J]. Remote Sensing of Environment, 2016, 186:501-513 doi: 10.1016/j.rse.2016.09.009
[30] Ferretti A, Prati C, Rocca F. Nonlinear Subsidence Rate Estimation Using Permanent Scatterers in Differential SAR Interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(5):2202-2212 doi: 10.1109/36.868878
[31] Ferretti A, Prati C, Rocca F. Permanent Scatterers in SAR Interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(1):8-20 doi: 10.1109/36.898661
[32] Ferretti A, Fumagalli A, Novali F, et al. A New Algorithm for Processing Interferometric Data-Stacks:SqueeSAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(9):3460-3470 doi: 10.1109/TGRS.2011.2124465
[33] Berardino P, Fornaro G, Lanari R, et al. A New Algorithm for Surface Deformation Monitoring Based on Small Baseline Differential SAR Interferograms[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(11):2375-2383 doi: 10.1109/TGRS.2002.803792
[34] Colesanti C, Ferretti A, Novali F, et al. SAR Monitoring of Progressive and Seasonal Ground Deformation Using the Permanent Scatterers Technique[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(7):1685-1701 doi: 10.1109/TGRS.2003.813278
[35] 葛大庆.地质灾害早期识别与监测预警中的综合遥感应用[J].城市与减灾, 2018(6):53-60 doi: 10.3969/j.issn.1671-0495.2018.06.011 Ge Daqing. Application of Remote Sensing in Early Recognition and Monitoring and Early Warning of Geological Hazards[J]. City and Disater Reduction, 2018(6):53-60 doi: 10.3969/j.issn.1671-0495.2018.06.011
[36] 卓宝熙.工程地质遥感判释与应用[M].北京:中国铁道出版社, 2011 Zhuo Baoxi. Remote Sensing Interpretation & Application of Geology Engineering[M]. Beijing:China Railway Publishing House, 2011
[37] Fiorucci F, Cardinali M, Carlà R, et al. Seasonal Landslide Mapping and Estimation of Landslide Mobilization Rates Using Aerial and Satellite Images[J]. Geomorphology, 2011, 129:59-70 doi: 10.1016/j.geomorph.2011.01.013
[38] Marcelino E V, Formaggio A R, Maeda E E. Landslide Inventory Using Image Fusion Techniques in Brazil[J]. International Journal of Applied Earth Observation and Geoinformation, 2009, 11(3):181-191 doi: 10.1016/j.jag.2009.01.003
[39] Gao J, Maro J. Topographic Controls on Evolution of Shallow Landslides in Pastoral Wairarapa, New Zealand, 1979-2003[J]. Geomorphology, 2010, 114:373-381 doi: 10.1016/j.geomorph.2009.08.002
[40] 朱建军, 李志伟, 胡俊. InSAR变形监测方法与研究进展[J].测绘学报, 2017, 46(10):1717-1733 doi: 10.11947/j.AGCS.2017.20170350 Zhu Jianjun, Li Zhiwei, Hu Jun. Research Progress and Methods of InSAR for Deformation Monitoring[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10):1717-1733 doi: 10.11947/j.AGCS.2017.20170350
[41] Costantini M, Rosen P A. Generalized Phase Unwrapping Approach for Sparse Data[C]. IEEE International Geoscience & Remote Sensing Symposium, Hamburg, Germany, 1999
[42] Fattahi H, Amelung F. DEM Error Correction in InSAR Time Series[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(7):4249-4259 doi: 10.1109/TGRS.2012.2227761
[43] Zebker H A, Rosen P A, Hensley S. Atmospheric Effects in Interferometric Synthetic Aperture Radar Surface Deformation and Topographic Maps[J]. Journal of Geophysical Research:Solid Earth, 1997, 102(B4):7547-7564 doi: 10.1029/96JB03804
[44] 王志勇, 张继贤, 黄国满. InSAR干涉条纹图去噪方法的研究[J].测绘科学, 2004, 29(6):31-33 doi: 10.3771/j.issn.1009-2307.2004.06.006 Wang Zhiyong, Zhang Jixian, Huang Guoman. The Research of Speckle Reduction for SAR Images[J]. Science of Surveying and Mapping, 2004, 29(6):31-33 doi: 10.3771/j.issn.1009-2307.2004.06.006