XU Shaoguang, XIONG Yongliang, LIU Ning, HUANG Dingfa. Real-time PWV Obtained by Ground GPS[J]. Geomatics and Information Science of Wuhan University, 2011, 36(4): 407-411.
Citation: XU Shaoguang, XIONG Yongliang, LIU Ning, HUANG Dingfa. Real-time PWV Obtained by Ground GPS[J]. Geomatics and Information Science of Wuhan University, 2011, 36(4): 407-411.

Real-time PWV Obtained by Ground GPS

Funds: 国家863计划资助项目(2007AA12Z315);国家自然科学基金资助项目(40874015)
More Information
  • Received Date: March 06, 2011
  • Published Date: April 04, 2011
  • It is important to inverse the high accuracy real-time PWV by ground GPS for the short term prediction of bad weather.Currently the orbit and clock errors of satellites from ultra-rapid ephemeris are the main factors constraining the improvement of PWV's precision,the former usually affects the acquiring of PWV by differential GPS.17 GPS CORS sites from PBO network of America are used to test for estimating the ZTD by double differential mode with the tightly constrained initial precise coordinate as well as the correction of site displacements by combined ephemeris,the near real-time PWV was computed every 60 seconds.By comparing the result to the static mode,it shows high coincide between both the modes with most stations have only 2 mm differences or smaller,the inner precision can reach 1mm,the delay is less than 4 minutes and can meet the requirements of the real-time numerical weather prediction.The feasible region of PWV inversed by the ground GPS is acquired after analyzing the affection of baselines length on the above results,and also the affection of the heights difference on the PWV's accuracy the is discussed.
  • Related Articles

    [1]ZHAO Yunpeng, SUN Qun, LIU Xingui, CHENG Mianmian, YU Tong, LI Yuanfu. Geographical Entity-Oriented Semantic Similarity Measurement Method and Its Application in Road Matching[J]. Geomatics and Information Science of Wuhan University, 2020, 45(5): 728-735. DOI: 10.13203/j.whugis20190039
    [2]XIN Rui, AI Tinghua, YAN Xiongfeng, YANG Min. Similarity Measurement-Based Outline Design of Metaphor Map[J]. Geomatics and Information Science of Wuhan University, 2019, 44(4): 625-632. DOI: 10.13203/j.whugis20170153
    [3]CHEN Zhanlong, WU Liang, XIE Zhong, ZHANG Dingwen. Similarity Measurement of Multi-holed Regions Using Constraint Satisfaction Problem[J]. Geomatics and Information Science of Wuhan University, 2018, 43(5): 745-751, 785. DOI: 10.13203/j.whugis20160191
    [4]ZHU Jin, HU Bin, SHAO Hua. Trajectory Similarity Measure Based on Multiple Movement Features[J]. Geomatics and Information Science of Wuhan University, 2017, 42(12): 1703-1710. DOI: 10.13203/j.whugis20150594
    [5]XU Qiuhui, SHE Jiangfeng, SONG Xiaoqun, XIAO Pengfeng. Matching Low Altitude RS Image with Harris-Laplace and SIFT Descriptor[J]. Geomatics and Information Science of Wuhan University, 2012, 37(12): 1443-1447.
    [6]XIE Mingxia, WANG Jiayao, GUO Jianzhong, CHEN Ke. Similarity Measurement in High Dimensional Space Based on Unequally Spaced Partition[J]. Geomatics and Information Science of Wuhan University, 2012, 37(7): 780-783.
    [7]AN Xiaoya, SUN Qun, YU Bohu. Feature Matching from Network Data at Different Scales Based on Similarity Measure[J]. Geomatics and Information Science of Wuhan University, 2012, 37(2): 224-228.
    [8]WAN Xue. Generalized Point Photogrammetry Feature Extraction Based on Harris Operator and Vectorization[J]. Geomatics and Information Science of Wuhan University, 2012, 37(2): 145-148.
    [9]MA Guorui, SUI Haigang, LI Pingxiang, QIN Qianqing. A Kernel-based Similarity Measures for Change Detection in RS Images[J]. Geomatics and Information Science of Wuhan University, 2009, 34(1): 19-23.
    [10]DU Peijun, TANG Hong, FANG Tao. Algorithms for Spectral Similarity Measure in Hyperspectral RS[J]. Geomatics and Information Science of Wuhan University, 2006, 31(2): 112-115.

Catalog

    Article views (1207) PDF downloads (362) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return