Early Detection of Landslide Hazards in Mountainous Areas of West China Using Time Series SAR Interferometry-A Case Study of Danba, Sichuan
-
摘要: 滑坡是仅次于地震、发生最频繁、造成损失最严重的一种地质灾害,中国西部山区则是世界上滑坡灾害分布最密集的地区之一。广域范围内滑坡灾害隐患的早期识别是地质灾害防治工作中的一项关键任务,基于星载合成孔径雷达重复轨道观测的时间序列雷达干涉测量(interferometric synthetic aperture radar,InSAR)技术在此领域具有巨大的应用潜力,但以永久散射体干涉测量为代表的传统时序InSAR方法在西部山区应用中往往受到植被覆盖等不利因素的影响,滑坡探测识别的可靠性较差。针对这一问题,以大渡河上游丹巴县为例,采用自主研发的相干散射体时序InSAR(coherent scatterer InSAR,CSI)方法,从历史存档的ALOS PALSAR和ENVISAT ASAR数据集中成功识别出了17处持续变形中的不稳定坡体,通过与外部观测数据比对和实地调查核实等手段验证了CSI方法探测结果的有效性和优势,并探讨了影响时序InSAR方法滑坡监测应用效果的主要因素及未来的优先研究方向。Abstract: As the most frequent and devastating geohazard next to earthquakes, landslides are widely distributed in mountainous areas of west China, which makes early detection of landslides a vital task for geologic disaster prevention. Although time series SAR interferometry (InSAR) based on repeat-pass satellite SAR observations has shown a great potential in landslide detection, its performance is usually limited by factors such as vegetation coverage, which leads to low reliability of detection results. Aiming at this problem, we carry out a case study by employing the coherent scatterer InSAR (CSI) method to successfully detect 17 unstable slopes in Danba County in the upper reach of Dadu River Basin from archived ALOS PALSAR and ENVISAT ASAR datasets. The effectiveness and advantage of the CSI method are demonstrated by comparisons with other observation data as well as validation against field survey. And, major impact factors for the performance of time series InSAR analysis in landslide investigations and future research topics of high priority are summarized.
-
Keywords:
- landslide /
- D-InSAR /
- time series InSAR /
- deformation measurement /
- early detection
-
致谢: 本研究中使用的ALOS PALSAR和ALOS-2 PALSAR-2数据由日本宇航局ALOS RA项目(1247, 1440, 3248)提供,ENVISAT ASAR数据由中欧合作“龙”计划项目(32278)提供。
-
表 1 丹巴实验区星载SAR数据基本参数
Table 1 Basic Parameters of Satellite SAR Datasets over Danba Area
参数 SAR传感器 PALSAR ASAR PALSAR-2 轨道方向 升轨 升轨 升轨/降轨 雷达波长/cm 23 5.6 23 空间分辨率/m 10 20 10 重访周期/d 46 35 14 视角/(°) 34 38 32/36 影像数量 19 9 2/2 时间覆盖范围 2006-12-2011-01 2007-08-2008-06 2015-12-18和2016-12-16/
2016-06-09和2017-06-08垂直基线分布范围/m -1 478~2 354 -326~60 91/124 表 2 时序InSAR分析滑坡探测识别结果
Table 2 Summary of Landslide Detection Results by Time Series InSAR Analysis
滑坡名称 坡向/(°) 坡度/(°) 面积/
km2MP点密度/
(MPs·km-2)最大LOS形变速率/(mm·a-1) 可探测数据集 梭坡滑坡 220 20~30 1.1 3 659 80 A, P1, P2D 聂呷复合滑坡 110 15~30 42.5 10 898 -120 A, P1, P2A, P2D 五里牌滑坡 40 25~35 0.1 15 227 -44 P1, P2A 格宗滑坡 60 25~35 5.1 13 586 -101 A, P1, P2A 泽公滑坡 50 15~30 7.5 12 577 -63 A, P1, P2A 白呷山滑坡 10 10~30 7.6 12 896 -35 A, P1, P2A 红军桥滑坡 170 30~40 0.7 3 356 -16 P1, P2D 东风滑坡 310 15~30 0.1 3 253 25 P1, P2D 中路滑坡 300 15~35 9.1 4 574 -54 P1, P2D 岳扎滑坡 100 20~30 1.3 5 820 -56 P1, P2A 麻索寨滑坡 180 35~45 0.7 4 348 -42 P1, P2A 齐支滑坡 80 25~35 3.4 12 610 -68 P1, P2A 木纳山滑坡 120 25~40 4.8 6 259 -78 P1, P2A 注:①A、P1、P2A和P2D分别代表ASAR、PALSAR、升轨PALSAR-2和降轨PALSAR-2数据;②聂呷复合滑坡由5个局部滑坡(甲居、高顶、聂拉村、聂呷坪、扎客)组成;③形变速率负值表示滑坡位移远离卫星方向;④坡向以正北方向为零度,顺时针记录 -
[1] 黄润秋, 许强.中国典型灾难性滑坡[M].北京:科学出版社, 2008 Huang Runqiu, Xu Qiang. Catastrophic Landslide Disasters in China[M]. Beijing:Science Press, 2008
[2] 许强, 李为乐, 董秀军, 等.四川茂县叠溪镇新磨村滑坡特征与成因机制初步研究[J].岩石力学与工程学报, 2017, 11:2612-2628 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QKC20172017112900068973 Xu Qiang, Li Weile, Dong Xiujun, et al. The Xinmocun Landslide on June 24, 2017 in Diexi Mao-xian, Sichuan:Characteristics and Failure Mechanism[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 11:2612-2628 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QKC20172017112900068973
[3] 殷跃平, 王文沛, 张楠, 等.强震区高位滑坡远程灾害特征研究——以四川茂县新磨滑坡为例[J].中国地质, 2017, 44(5):827-841 http://www.cqvip.com/QK/90050X/201705/7000404302.html Yin Yueping, Wang Wenpei, Zhang Nan, et al.Long Runout Geological Disaster Initiated by the Ridge-Top Rockslide in a Strong Earthquake Area:A Case Study of the Xinmo Landslide in Maoxian County, Sichuan Province[J]. Geology in China, 2017, 44(5):827-841 http://www.cqvip.com/QK/90050X/201705/7000404302.html
[4] Su L, Hu K, Zhang W, et al. Characteristics and Triggering Mechanism of Xinmo Landslide on June 242017 in Sichuan, China[J]. Journal of Mountain Science, 2017, 14(9):1689-1700 doi: 10.1007/s11629-017-4609-3
[5] 许强, 汤明高, 黄润秋.大型滑坡监测预警与应急处置[M].北京:科学出版社, 2015 Xu Qiang, Tang Minggao, Huang Runqiu. Monitoring, Early Warning and Emergency Disposal of Large Landslides[M]. Beijing:Science Press, 2015
[6] 郭华东.雷达对地观测理论与应用[M].北京:科学出版社, 2000 Guo Huadong. Theory and Application of Earth Observation by Radar[M]. Beijing:Science Press, 2000
[7] 廖明生, 王腾.时间序列InSAR技术与应用[M].北京:科学出版社, 2014 Liao Mingsheng, Wang Teng. Time Series InSAR Technology and Its Applications[M]. Beijing:Scie-nce Press, 2014
[8] 廖明生, 张路, 史绪国, 等.滑坡变形雷达遥感监测方法与实践[M].北京:科学出版社, 2017 Liao Mingsheng, Zhang Lu, Shi Xuguo, et al. Methodology and Practice of Landslide Deformation Monitoring with SAR Remote Sensing[M]. Beijing:Science Press, 2017
[9] Rosen P A, Hensley S, Joughin I R, et al. Synthetic Aperture Radar Interferometry[J]. Proc of IEEE, 2000, 88(3):333-382 doi: 10.1109/5.838084
[10] Hooper A, Bekaert D, Spaans K, et al. Recent Advances in SAR Interferometry Time Series Analysis for Measuring Crustal Deformation[J].Tectonophysics, 2012, 514:1-13 http://www.sciencedirect.com/science/article/pii/S0040195111004343
[11] Crosetto M, Monserrat O, Cuevas-González M, et al. Persistent Scatterer Interferometry:A Review[J].ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 115:78-89 doi: 10.1016/j.isprsjprs.2015.10.011
[12] 杨成生, 张勤, 赵超英, 等.短基线集InSAR技术用于大同盆地地面沉降、地裂缝及断裂活动监测[J].武汉大学学报·信息科学版, 2014, 39(8):945-950 http://ch.whu.edu.cn/CN/abstract/abstract3049.shtml Yang Chengsheng, Zhang Qin, Zhao Chaoying, et al. Small Baseline Subset InSAR Technology Used in Datong Basin Ground Subsidence, Fissure and Fault Zone Monitoring[J]. Geomatics and Information Science of Wuhan University, 2014, 39(8):945-950 http://ch.whu.edu.cn/CN/abstract/abstract3049.shtml
[13] 李鹏, 李振洪, 李陶, 等.宽幅InSAR大地测量学与大尺度形变监测方法[J].武汉大学学报·信息科学版, 2017, 42(9):1195-1202 http://ch.whu.edu.cn/CN/abstract/abstract5817.shtml Li Peng, Li Zhenhong, Li Tao, et al. Wide-Swath InSAR Geodesy and Its Applications to Large-Scale Deformation Monitoring[J]. Geomatics and Information Science of Wuhan University, 2017, 42(9):1195-1202 http://ch.whu.edu.cn/CN/abstract/abstract5817.shtml
[14] Zhang Y, Meng X, Chen G, et al. Detection of Geohazards in the Bailong River Basin Using Synthetic Aperture Radar Interferometry[J].Landslides, 2016, 13(5):1273-1284 doi: 10.1007/s10346-015-0660-8
[15] Shi X, Liao M, Li M, et al. Wide-Area Landslide Deformation Mapping with Multi-path ALOS PALSAR Data Stacks:A Case Study of Three Gorges Area, China[J]. Remote Sensing, 2016, 8(2):136 doi: 10.3390/rs8020136
[16] Hanssen R F. Radar Interferometry, Data Interpretation and Error Analysis[M]. Netherlands:Springer, 2001
[17] Ferretti A, Prati C, Rocca F. Nonlinear Subsidence Rate Estimation Using Permanent Scatterers in Differential SAR Interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(5):2202-2212 doi: 10.1109/36.868878
[18] Ferretti A, Prati C, Rocca F. Permanent Scatterers in SAR Interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(1):8-20 doi: 10.1109/36.898661
[19] Berardino P, Fornaro G, Lanari R, et al. A New Algorithm for Surface Deformation Monitoring Based on Small Baseline Differential SAR Interferograms[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(11):2375-2383 doi: 10.1109/TGRS.2002.803792
[20] Mora O, Mallorqui J J, Broquetas A. Linear and Nonlinear Terrain Deformation Maps from a Reduced Set of Interferometric SAR Images[J].IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(10):2243-2253 doi: 10.1109/TGRS.2003.814657
[21] Lanari R, Mora O, Manunta M, et al. A Small-Baseline Approach for Investigating Deformations on Full-Resolution Differential SAR Interferograms[J].IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(7):1377-1386 doi: 10.1109/TGRS.2004.828196
[22] Hooper A. A Multi-temporal InSAR Method Incorporating Both Persistent Scatterer and Small Baseline Approaches[J].Geophysical Research Letter, 2008, 35:L16302 doi: 10.1029/2008GL034654
[23] Ferretti A, Fumagalli A, Novali F, et al. A New Algorithm for Processing Interferometric Data-Stacks:SqueeSAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(9):3460-3470 doi: 10.1109/TGRS.2011.2124465
[24] Wang Y, Zhu X, Bamler R. Retrieval of Phase History Parameters from Distributed Scatterers in Urban Areas Using very High Resolution SAR Data[J].ISPRS Journal of Photogrammetry and Remote Sensing, 2012, 73(9):89-99 http://www.sciencedirect.com/science/article/pii/S0924271612001219
[25] Goel K, Adam N. A Distributed Scatterer Interfero-metry Approach for Precision Monitoring of Known Surface Deformation Phenomena[J].IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(9):5454-5468 doi: 10.1109/TGRS.2013.2289370
[26] Lv X, Yazici B, Zeghal M, et al. Joint-Scatterer Processing for Time-Series InSAR[J].IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(11):7205-7221 doi: 10.1109/TGRS.2014.2309346
[27] Ng A H M, Ge L, Li X. Assessments of Land Subsidence in the Gippsland Basin of Australia Using ALOS PALSAR Data[J]. Remote Sensing of Environment, 2015, 159:86-101 doi: 10.1016/j.rse.2014.12.003
[28] Fornaro G, Verde S, Reale D, et al. CAESAR:An Approach Based on Covariance Matrix Decomposition to Improve Multibaseline-Multitemporal Interferometric SAR Processing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(4):2050-2065 doi: 10.1109/TGRS.2014.2352853
[29] Cao N, Lee H, Jung H C. A Phase-Decomposition-Based PSInSAR Processing Method[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(2):1074-1090 doi: 10.1109/TGRS.2015.2473818
[30] Dong J, Zhang L, Tang M, et al. Mapping Landslide Surface Displacements with Time Series SAR Interferometry by Combining Persistent and Distri-buted Scatterers:A Case Study of Jiaju Landslide in Danba, China[J]. Remote Sensing of Environment 2018, 205:180-198 doi: 10.1016/j.rse.2017.11.022
[31] 李明辉, 郑万模, 陈启国.丹巴县地质灾害发育特征及成因探讨[J].自然灾害学报, 2008, 17(1):49-53 doi: 10.3969/j.issn.1004-4574.2008.01.009 Li Minghui, Zheng Wanmo, Chen Qiguo. Development Characteristic of Geological Hazard in Danba County and Its Cause Discussion[J].Journal of Natural Disasters, 2008, 17(1):49-53 doi: 10.3969/j.issn.1004-4574.2008.01.009
[32] Fujisada H, Bailey G B, Kelly G G, et al. ASTER DEM Performance[J].IEEE Transactions on Geoscie-nce and Remote Sensing, 2005, 43(12):2707-2714 doi: 10.1109/TGRS.2005.847924
[33] 敖萌, 张勤, 赵超英, 等.改进的CR-InSAR技术用于四川甲居滑坡形变监测[J].武汉大学学报·信息科学版, 2017, 42(3):377-383 http://ch.whu.edu.cn/CN/abstract/abstract5689.shtml Ao Meng, Zhang Qin, Zhao Chaoying, et al. An Improved CR-InSAR Technology Used for Deforma-tion Monitoring in Jiaju Landslide, Sichuan[J]. Geomatics and Information Science of Wuhan University, 2017, 42(3):377-383 http://ch.whu.edu.cn/CN/abstract/abstract5689.shtml
[34] Colesanti C, Wasowski J. Investigating Landslides with Space-Borne Synthetic Aperture Radar (SAR) Interferometry[J]. Engineering Geology, 2006, 88(3):173-199 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=76e04e80aa3b1d5c4a0e9e7422064125
[35] Yin Y, Zheng W, Liu Y, et al. Integration of GPS with InSAR to Monitoring of the Jiaju Landslide in Sichuan, China[J]. Landslides, 2010, 7(3):359-365 doi: 10.1007/s10346-010-0225-9
[36] Hu J, Li Z W, Ding X L, et al. Resolving Three-Dimensional Surface Displacements from InSAR Measurements:A Review[J]. Earth-Science Reviews, 2014, 133:1-17 doi: 10.1016/j.earscirev.2014.02.005
[37] Shi X, Zhang L, Zhou C, et al. Retrieval of Time Series Three-Dimensional Landslide Surface Displacements from Multi-angular SAR Observations[J]. Landslides, 2018, 15(5):1015-1027 doi: 10.1007/s10346-018-0975-3
[38] Wasowski J, Bovenga F. Investigating Landslides and Unstable Slopes with Satellite Multi Temporal Interfero-metry:Current Issues and Future Perspectives[J]. Engineering Geology, 2014, 174:103-138 doi: 10.1016/j.enggeo.2014.03.003
[39] Shi X, Zhang L, Balz T, et al. Landslide Deformation Monitoring Using Point-Like Target Offset Tracking with Multi-mode High-Resolution TerraSAR-X Data[J].ISPRS Journal of Photogrammetry and Remote Sensing, 2015, 105:128-140 doi: 10.1016/j.isprsjprs.2015.03.017
[40] Shi X, Jiang H, Zhang L, et al. Landslide Displacement Monitoring with Split-Bandwidth Interferometry:A Case Study of the Shuping Landslide in the Three Gorges Area[J].Remote Sensing, 2017, 9(9):937 doi: 10.3390/rs9090937
[41] Bekaert D P S, Walters R J, Wright T J, et al. Statistical Comparison of InSAR Tropospheric Correction Techniques[J]. Remote Sensing of Environment, 2015, 170:40-47 doi: 10.1016/j.rse.2015.08.035