Citation: | DONG Chuankai, YU Facheng, ZHANG Weixing, FANG Lizhe, WEI Kangli, LOU Yidong, OU Shuyuan. Research on Improved GNSS-PWV Three Factor Threshold Rainfall Forecasting Method[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20220798 |
[1] |
Disaster Investigation Team of the State Council. Investigation Report on "7.20" Extraordinary Rainstorm Disaster in Zhengzhou, Henan[R]. Ministry of Emergency Management of the People's Republic of China, 2022.(河南郑州"7.20"特大暴雨灾害调查报告[R].中华人民共和国应急管理部, 2022)
|
[2] |
Bretherton C S, Peters M E, Back L E. Relationships between Water Vapor Path and Precipitation over the Tropical Oceans[J]. Journal of Climate, 2004, 17(7):1517-1528.
|
[3] |
Li G, Chen J, Hao L. Case Study of the Rainfall Processes in Different Cloud Systems Based on GPS-PWV Data in Chengdu Plain[J]. Geomatics and Information Science of Wuhan University, 2011, 36(4):384-388(李国平, 陈娇娜, 郝丽萍. 基于GPS-PWV的不同云系降水个例的综合分析[J]. 武汉大学学报(信息科学版), 2011, 36(4):384-388)
|
[4] |
Wang J, Zhang L, Dai A, Hove T V, Baelen J. A near-global, 2-hourly data set of atmospheric Precipitable water from ground-based GPS measurements[J]. Journal of Geophysical Research, 2007:Atmospheres 112(D11).
|
[5] |
Chen Y, Liu Y, Wang X, et al. GPS Real-Time Estimation of Precipitable Water Vapor-Hong Kong Experiences[J]. Acta Geodaetica et Cartographica Sinica, 2007, 36(1):9-12, 25(陈永奇,刘焱雄,王晓亚等.香港实时GPS水汽监测系统的若干关键技术[J].测绘学报,2007(1):9-12+25)
|
[6] |
Shi C, Zhou L, Fan L, et al. Analysis of "21· 7" extreme rainstorm process in Henan Province using Beidou/GNSS observation. Chinese Journal of Geophysics, 2022, 65(1):186-196(施闯,周凌昊,范磊等.利用北斗/GNSS观测数据分析"21·7"河南极端暴雨过程[J].地球物理学报,2022,65(1):186-196)
|
[7] |
Zhao Q, Du Z, Wu M, et al. Establishment of PWV Fusion Model Using Multisource Data. Geomatics and Information Science of Wuhan University, 2022, 47(11):1823-1831(赵庆志, 杜正, 吴满意,等. 利用多源数据构建PWV混合模型[J]. 武汉大学学报(信息科学版), 2022, 47(11):1823-1831)
|
[8] |
Seco A, Ramírez F, Serna E, et al. Rain pattern analysis and forecast model based on GPS estimated atmospheric water vapor content[J]. Atmospheric environment, 2012, 49:85-93.
|
[9] |
Wang G, Wang Z, Yang J. Ground-Based GPS Nearly Real-Time Inversion of Precipitable Water Vapor over Three Gorges Area. Geomatics and Information Science of Wuhan University, 2007, 32(9):761-763(王贵文, 王泽民, 杨剑. 地基GPS准实时反演三峡地区大气可降水量的研究[J]. 武汉大学学报(信息科学版), 2007, 32(9):761-763)
|
[10] |
Bevis M, Businger S, Chiswell S, et al. GPS meteorology:Mapping zenith wet delays onto precipitable water[J]. Journal of Applied Meteorology, 1994:379-386.
|
[11] |
Saastamoinen J. Atmospheric correction for the troposphere and stratosphere in radio ranging satellites[J]. The use of artificial satellites for geodesy, 1972, 15:247- 251.
|
[12] |
Li X, Dick G, Lu C, et al. Multi-GNSS meteorology:real-time retrieving of atmospheric water vapor from BeiDou, Galileo, GLONASS, and GPS observations[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(12):6385-6393.
|
[13] |
Shi J, Xu C, Guo J, et al. Real-time GPS precise point positioning-based precipitable water vapor estimation for rainfall monitoring and forecasting[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 53(6):3452-3459.
|
[14] |
Benevides P, Catalao J, Miranda P M A. On the inclusion of GPS precipitable water vapour in the nowcasting of rainfall[J]. Natural Hazards and Earth System Sciences, 2015, 15(12):2605-2616.
|
[15] |
Yao Y, Shan L, Zhao Q. Establishing a method of short-term rainfall forecasting based on GNSS-derived PWV and its application[J]. Sci Rep, 2017, 7:12465.
|
[16] |
Shan L, Yao Y, Zhao Q, et al. A Short-term Rainfall Forecasting Method based on GNSS PWV Data[J]. Journal of Geomatics, 2019, 44(1):22-26(单路路,姚宜斌, 赵庆志, 等. 基于GNSS PWV的短临降雨预测方法[J]. 测绘地理信息, 2019, 44(1):22-26.)
|
[17] |
Manandhar S, Lee Y H, Meng Y S. GPS-PWV Based Improved Long-Term Rainfall Prediction Algorithm for Tropical Regions[J]. Remote Sensing, 2019, 11(22):2643.
|
[18] |
Li H, Wang X, Wu S, et al. A new method for determining an optimal diurnal threshold of GNSS precipitable water vapor for precipitation forecasting[J]. Remote Sensing, 2020, 13(7):1390.
|
[19] |
Liu Y, Zhao Q, Yao W. Combining GNSS-derived PWV and meteorological parameters for short-term rainfall forecasting[C]//China Satellite Navigation Office Academic Exchange Center. Proceedings of the 11th China Satellite Navigation Conference-S01 Satellite Navigation Industry Applications, 2020:6(刘洋,赵庆志,姚顽强. 联合GNSS PWV与气象参数的短临降雨预测[C]//中国卫星导航系统管理办公室学术交流中心.第十一届中国卫星导航年会论文集——S01卫星导航行业应用, 2020:6)
|
[20] |
Liu Y, Zhao Q, Yao W. Rainfall forecast based on multi-hidden layers neural network and GNSS-PWV[J]. Bulletin of Surveying and Mapping, 2019(S1):36-40(刘洋,赵庆志,姚顽强. 基于多隐层神经网络的GNSS PWV和气象数据的降雨预测研究[J]. 测绘通报, 2019(S1):36-40)
|
[21] |
Biswas A N, Lee Y H, Manandhar S. Rainfall Forecasting Using GPS Derived Atmospheric Gradient and Residual for Tropical Region[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021.
|
[22] |
Zhao Q, Liu Y, Yao W, et al. Hourly rainfall forecast model using supervised learning algorithm[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 60:1-9.
|
[23] |
Ware R H, Fulker D W, Stein S A, et al. SuomiNet:A real-time national GPS network for atmospheric research and education[J]. Bulletin of the American Meteorological Society, 2020, 81(4):677-694.
|
[24] |
Doswell C A, Flueck J A. Forecasting and verifying in a field research project:DOPLIGHT'87[J]. Weather and forecasting, 1989, 4(2):97-109.
|
[25] |
Donaldson R J, Dyer R M, Kraus M J. Objective evaluator of techniques for predicting severe weather events[J]. Bulletin of the American Meteorological Society, 1975, 56(7):755-755.
|
[1] | HUANG Bohua, YANG Bohang, LI Minggui, GUO Zhongkai, MAO Jianyou, WANG Hong. An Improved Method for MAD Gross Error Detection of Clock Error[J]. Geomatics and Information Science of Wuhan University, 2022, 47(5): 747-752. DOI: 10.13203/j.whugis20190430 |
[2] | WANG Leyang, GU Wangwang, ZHAO Xiong, XU Guangyu, GAO Hua. Determination of Relative Weight Ratio of Joint Inversion Using Bias-Corrected Variance Component Estimation Method[J]. Geomatics and Information Science of Wuhan University, 2022, 47(4): 508-516. DOI: 10.13203/j.whugis20200216 |
[3] | IA Lei, LAI Zulong, MEI Changsong, JIAO Chenchen, JIANG Ke, PAN Xiong. An Improved Algorithm for Real-Time Cycle Slip Detection and Repair Based on TurboEdit Epoch Difference Model[J]. Geomatics and Information Science of Wuhan University, 2021, 46(6): 920-927. DOI: 10.13203/j.whugis20190287 |
[4] | ZHAO Jianhu, WU Jingwen, ZHAO Xinglei, ZHOU Fengnian. A Correction Model for Depth Bias in Airborne LiDAR Bathymetry Systems[J]. Geomatics and Information Science of Wuhan University, 2019, 44(3): 328-333. DOI: 10.13203/j.whugis20160481 |
[5] | LU Tieding, YANG Yuanxi, ZHOU Shijian. Comparative Analysis of MDB for Different Outliers Detection Methods[J]. Geomatics and Information Science of Wuhan University, 2019, 44(2): 185-192, 199. DOI: 10.13203/j.whugis20140330 |
[6] | LOU Yidong, GONG Xiaopeng, GU Shengfeng, ZHENG Fu, YI Wenting. The Characteristic and Effect of Code Bias Variations of BeiDou[J]. Geomatics and Information Science of Wuhan University, 2017, 42(8): 1040-1046. DOI: 10.13203/j.whugis20150107 |
[7] | SUN Wenchuan, BAO Jingyang, JIN Shaohua, XIAO Fumin, ZHANG Zhiwei. A Re-calibration Method for Roll Bias of Multi-beam Sounding System[J]. Geomatics and Information Science of Wuhan University, 2016, 41(11): 1440-1444. DOI: 10.13203/j.whugis20140481 |
[8] | ZOU Qin, LI Qingquan. Target-points MST for Pavement Crack Detection[J]. Geomatics and Information Science of Wuhan University, 2011, 36(1): 71-75. |
[9] | HUANG Xianyuan, ZHAI Guojun, SUI Lifen, HUANG Motao. Application of Least Square Support Vector Machine to Detecting Outliers of Multi-beam Data[J]. Geomatics and Information Science of Wuhan University, 2010, 35(10): 1188-1191. |
[10] | XU Caijun, WANG Jianglin. Linear Minimum Mean Square Error Estimation for Wet Delay Correction in SAR Interferogram[J]. Geomatics and Information Science of Wuhan University, 2007, 32(9): 757-760. |