WU Yanxiong, TENG Yuntian, WU Qiong, XU Xing, ZHANG Bing. Error Correction Model and Uncertainty Analysis of the Shipborne Absolute Gravity Measurement System[J]. Geomatics and Information Science of Wuhan University, 2022, 47(4): 492-500. DOI: 10.13203/j.whugis20190412
Citation: WU Yanxiong, TENG Yuntian, WU Qiong, XU Xing, ZHANG Bing. Error Correction Model and Uncertainty Analysis of the Shipborne Absolute Gravity Measurement System[J]. Geomatics and Information Science of Wuhan University, 2022, 47(4): 492-500. DOI: 10.13203/j.whugis20190412

Error Correction Model and Uncertainty Analysis of the Shipborne Absolute Gravity Measurement System

Funds: 

The National Key Research and Development Program of China 2018YFC1503801

Special Support for Basic Scientific Research Business Expenses of the Institute of Geophysics, China Earthquake Administration DQJB19B23

More Information
  • Author Bio:

    WU Yanxiong, PhD candidate, associate professor, specializes in earth exploration technology. E⁃mail: wuyanxiong@cidp.edu.cn

  • Corresponding author:

    WU Qiong, PhD, professor. E-mail: wuqiong@cea-ipg.ac.cn

  • Received Date: June 10, 2020
  • Published Date: April 04, 2022
  •   Objectives  The laser interference absolute gravimeters can only work in static conditions until now, and absolute gravity measurement in a dynamic environment is one of the hotspots for future technological development. The shipboard absolute gravity measurement can overcome the problems of zero drift, calibration, and error accumulation of the marine relative gravity instruments, and improve their efficiency and reliability.
      Methods  We present an absolute gravity measurement system from a ship, which consisted of an absolute gravity instrument, a gyro-stabilized platform, a force balance accelerometer and GPS (global positioning system).Firstly, Four types of interference sources that the vertical fluctuation, the pitch and roll, the horizontal fluctuation and the Eötvös effect, which cause the measurement errors of the shipboard gravity measurement system, were analyzed. Then, the limits of dynamic measurement, the error correction methods and their accuracy were given.
      Results and Conclusions  Under current technical conditions, the precision of the shipboard absolute gravimeter measurement system can be better than ±1.1 mGal. Therefore it provides theoretical support for further shipborne absolute gravity measurement experiments.
  • [1]
    宁津生, 黄谟涛, 欧阳永忠, 等. 海空重力测量技术进展[J]. 海洋测绘, 2014, 34(3): 67-72 https://www.cnki.com.cn/Article/CJFDTOTAL-HYCH201403024.htm

    Ning Jinsheng, Huang Motao, Ouyang Yongzhong, et al. Development of Marine and Airborne Gravity Measurement Technologies[J]. Hydrographic Surveying and Charting, 2014, 34(3): 67-72 https://www.cnki.com.cn/Article/CJFDTOTAL-HYCH201403024.htm
    [2]
    刘敏, 黄谟涛, 欧阳永忠, 等. 海空重力测量及应用技术研究进展与展望(一): 目的意义与技术体系[J]. 海洋测绘, 2017, 37(2): 1-5 https://www.cnki.com.cn/Article/CJFDTOTAL-HYCH201702001.htm

    Liu Min, Huang Motao, Ouyang Yongzhong, et al. Development and Prospect of Air-Sea Gravity Survey and Its Applications, Part Ⅰ: Objective, Significance and Technical System[J]. Hydrographic Surveying and Charting, 2017, 37(2): 1-5 https://www.cnki.com.cn/Article/CJFDTOTAL-HYCH201702001.htm
    [3]
    曾华霖. 重力场与重力勘探[M]. 北京: 地质出版社, 2005

    Zeng Hualin. Gravity Field and Gravity Exploration[M]. Beijing: Geological Publishing House, 2005
    [4]
    黄谟涛, 翟国君, 欧阳永忠, 等. 海洋磁场重力场信息军事应用研究现状与展望[J]. 海洋测绘, 2011, 31(1): 71-76 https://www.cnki.com.cn/Article/CJFDTOTAL-HYCH201101024.htm

    Huang Motao, Zhai Guojun, Ouyang Yongzhong, et al. Prospects and Development in the Military Applications of Marine Gravity and Magnetic Information[J]. Hydrographic Surveying and Charting, 2011, 31(1): 71-76 https://www.cnki.com.cn/Article/CJFDTOTAL-HYCH201101024.htm
    [5]
    郑伟, 许厚泽, 钟敏, 等. 国际重力卫星研究进展和我国将来卫星重力测量计划[J]. 测绘科学, 2010, 35(1): 5-9 https://www.cnki.com.cn/Article/CJFDTOTAL-CHKD201001002.htm

    Zheng Wei, Xu Houze, Zhong Min, et al. Research Progress in International Gravity Satellites and Future Satellite Gravity Measurement Program in China[J]. Science of Surveying and Mapping, 2010, 35(1): 5-9 https://www.cnki.com.cn/Article/CJFDTOTAL-CHKD201001002.htm
    [6]
    Sandwell D T, Müller R D, Smith W H F, et al. New Global Marine Gravity Model from CryoSat-2 and Jason-1 Reveals Buried Tectonic Structure[J]. Science, 2014, 346(6205): 65-67 doi: 10.1126/science.1258213
    [7]
    孙中苗. 航空重力测量理论、方法及应用研究[D]. 郑州: 信息工程大学, 2004

    Sun Zhongmiao. Theory, Methods and Applications of Airborne Gravimetry[D]. Zhengzhou: Information Engineering University, 2004
    [8]
    张向宇, 徐行, 廖开训, 等. 多型号海洋重力仪的海上比测结果分析[J]. 海洋测绘, 2015, 35(5): 71-74 https://www.cnki.com.cn/Article/CJFDTOTAL-HYCH201505019.htm

    Zhang Xiangyu, Xu Xing, Liao Kaixun, et al. Result Analysis for Different Types of Gravimeters in Sea Trials[J]. Hydrographic Surveying and Charting, 2015, 35(5): 71-74 https://www.cnki.com.cn/Article/CJFDTOTAL-HYCH201505019.htm
    [9]
    王劲松, 吴琼, 徐行, 等. 新型绝对重力仪在海洋重力基点测量中的应用[J]. 海洋测绘, 2016, 36(5): 43-46 https://www.cnki.com.cn/Article/CJFDTOTAL-HYCH201605011.htm

    Wang Jinsong, Wu Qiong, Xu Xing, et al. Application of Absolute Gravimetric Measurement Technology in Marine Survey[J]. Hydrographic Surveying and Charting, 2016, 36(5): 43-46 https://www.cnki.com.cn/Article/CJFDTOTAL-HYCH201605011.htm
    [10]
    Brown J M, Niebauer T M, Klingele E. Towards a Dynamic Absolute Gravity System[C]//Gravity, Geoid and Geodynamics, Alberta, Canada, 2000
    [11]
    Baumann H, Klingelé E E, Marson I. Absolute Airborne Gravimetry: A Feasibility Study[J]. Geophysical Prospecting, 2012, 60(2): 361-372
    [12]
    Bidel Y, Zahzam N, Blanchard C, et al. Absolute Marine Gravimetry with Matter-Wave Interferometry[J]. Nature Communications, 2018, 9: 627
    [13]
    黄谟涛, 翟国军, 管铮, 等. 海洋重力场测定及其应用[M]. 北京: 测绘出版社, 2005

    Huang Motao, Zhai Guojun, Guan Zheng, et al. Determination and Application of Marine Gravity Field[M]. Beijing: Sino Maps Press, 2005
    [14]
    谭立龙, 张彦涛, 王鹏, 等. 原子干涉重力仪测量原理与发展现状[J]. 地球物理学进展, 2020, 4: 1310-1316 https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ202004012.htm

    Tan Lilong, Zhang Yantao, Wang Peng, et al. Measurement Principle and Development Status of Atomic Interference Gravimeter[J]. Progress in Geophysics, 2020, 4: 1310-1316 https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ202004012.htm
    [15]
    滕云田, 吴琼, 郭有光, 等. 基于激光干涉的新型高精度绝对重力仪[J]. 地球物理学进展, 2013, 28(4): 2 141-2 147 https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201304061.htm

    Teng Yuntian, Wu Qiong, Guo Youguang, et al. New Type of High-Precision Absolute Gravimeter Base on Laser Interference[J]. Progress in Geophysics, 2013, 28(4): 2 141-2 147 https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201304061.htm
    [16]
    黄谟涛, 刘敏, 孙岚, 等. 海洋重力测量动态环境效应分析与补偿[J]. 海洋测绘, 2015, 35(1): 1-6 https://www.cnki.com.cn/Article/CJFDTOTAL-HYCH201501001.htm

    Huang Motao, Liu Min, Sun Lan, et al. Compensation and Analysis of Dynamic Environment Effect on Marine Gravimetry[J]. Hydrographic Surveying and Charting, 2015, 35(1): 1-6 https://www.cnki.com.cn/Article/CJFDTOTAL-HYCH201501001.htm
    [17]
    欧阳永忠. 海空重力测量数据处理关键技术研究[D]. 武汉: 武汉大学, 2013

    Ouyang Yongzhong. On Key Technologies of Data Processing for Air-Sea Gravity Surveys[D]. Wuhan: Wuhan University, 2013
    [18]
    Van Camp M, CamelBeeck T, Richard P. The FG5 Absolute Gravimeter: Metrology and Geophysics[J]. Physicalia Magazine, Journal of the Belgian Society, 2003, 25(3) : 161-174
    [19]
    吴琼. 高精度绝对重力仪关键技术研究[D]. 北京: 中国地震局地球物理研究所, 2011

    Wu Qiong. The Study of the Key Technology in High-Precision Absolute Gravimeter[D]. Beijing: Institute of Geophysics China Earthquake Administration, 2011
    [20]
    Niebauer T M, Sasagawa G S, Faller J E, et al. A New Generation of Absolute Gravimeters[J]. Metrologia, 1995, 32(3): 159-180
    [21]
    周斌, 刘秉琦, 张瑜. 斜入射条件下角锥棱镜光学特性分析[J]. 激光与红外, 2011, 41(11): 1 231-1 234 https://www.cnki.com.cn/Article/CJFDTOTAL-JGHW201111012.htm

    Zhou Bin, Liu Bingqi, Zhang Yu. Analysis of Optical Characteristics of Cube Corner Retro-Reflector with Oblique Incident Angle[J]. Laser & Infrared, 2011, 41(11): 1 231-1 234 https://www.cnki.com.cn/Article/CJFDTOTAL-JGHW201111012.htm
    [22]
    焦仲科, 岳永坚. 角锥棱镜的入射角及有效反射面积分析[J]. 半导体光电, 2014, 35(5): 811-816 https://www.cnki.com.cn/Article/CJFDTOTAL-BDTG201405015.htm

    Jiao Zhongke, Yue Yongjian. Analysis on the Maximum Incident Angle and Effective Reflection Area of Cube Corner Retro-Reflector[J]. Semiconductor Optoelectronics, 2014, 35(5): 811-816 https://www.cnki.com.cn/Article/CJFDTOTAL-BDTG201405015.htm
    [23]
    Wu P F, Liu L T, Wang L, et al. A Gyro-Stabilized Platform Leveling Loop for Marine Gravimeter[J]. Review of Scientific Instruments, 2017, 88(6): 064501
    [24]
    Torge W. Geodesy[M]. Berlin: De Gruyter, 1991
    [25]
    吴琼, 滕云田, 张兵, 等. 绝对重力仪研制中仪器测量高度的计算[J]. 武汉大学学报·信息科学版, 2017, 42(12): 1773-1778 doi: 10.13203/j.whugis20150529

    Wu Qiong, Teng Yuntian, Zhang Bing, et al. Calculation of Measurement-Height in Development of the Absolute Gravimeter[J]. Geomatics and Information Science of Wuhan University, 2017, 42(12): 1773-1778 doi: 10.13203/j.whugis20150529
    [26]
    Johannes W J, Smilde P L. Qualitative Interpretation[M]. Berlin, Heidelberg: Springer, 2009
    [27]
    龙剑锋, 黄大伦, 滕云田, 等. 绝对重力仪测量结果的振动划线处理方法初步研究[J]. 地震学报, 2012, 34(6): 865-872 https://www.cnki.com.cn/Article/CJFDTOTAL-DZXB201206013.htm

    Long Jianfeng, Huang Dalun, Teng Yuntian, et al. Study on Vibration Scribing Algorithm for an Absolute Gravitational Measurement[J]. Acta Seismologica Sinica, 2012, 34(6): 865-872 https://www.cnki.com.cn/Article/CJFDTOTAL-DZXB201206013.htm
    [28]
    Rothleitner C, Svitlov S, Mérimèche H, et al. Development of New Free-Fall Absolute Gravimeters[J]. Metrologia, 2009, 46(3): 283-297
  • Related Articles

    [1]MENG Yiyue, GUO Chi, LIU Jingnan. Deep Reinforcement Learning Visual Target Navigation Method Based on Attention Mechanism and Reward Shaping[J]. Geomatics and Information Science of Wuhan University, 2024, 49(7): 1100-1108. DOI: 10.13203/j.whugis20230193
    [2]GAO Kuiliang, LIU Bing, YU Xuchu, YU Anzhu, SUN Yifan. Automatic Network Structure Search Method for Hyperspectral Image Classification[J]. Geomatics and Information Science of Wuhan University, 2024, 49(2): 225-235. DOI: 10.13203/j.whugis20210380
    [3]WANG Jie, LIU Jiahang, LING Xinpeng, DUAN Zexian. Deep Learning-Based Joint Local and Non-local InSAR Image Phase Filtering Method[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20240052
    [4]GUO Congzhou, LI Ke, LI He, TONG Xiaochong, WANG Xiwen. Deep Convolution Neural Network Method for Remote Sensing Image Quality Level Classification[J]. Geomatics and Information Science of Wuhan University, 2022, 47(8): 1279-1286. DOI: 10.13203/j.whugis20200292
    [5]LI Yansheng, ZHANG Yongjun. A New Paradigm of Remote Sensing Image Interpretation by Coupling Knowledge Graph and Deep Learning[J]. Geomatics and Information Science of Wuhan University, 2022, 47(8): 1176-1190. DOI: 10.13203/j.whugis20210652
    [6]JI Shunping, LUO Chong, LIU Jin. A Review of Dense Stereo Image Matching Methods Based on Deep Learning[J]. Geomatics and Information Science of Wuhan University, 2021, 46(2): 193-202. DOI: 10.13203/j.whugis20200620
    [7]ZHANG Liqiang, LI Yang, HOU Zhengyang, LI Xingang, GENG Hao, WANG Yuebin, LI Jingwen, ZHU Panpan, MEI Jie, JIANG Yanxiao, LI Shuaipeng, XIN Qi, CUI Ying, LIU Suhong. Deep Learning and Remote Sensing Data Analysis[J]. Geomatics and Information Science of Wuhan University, 2020, 45(12): 1857-1864. DOI: 10.13203/j.whugis20200650
    [8]JU Yuanzhen, XU Qiang, JIN Shichao, LI Weile, DONG Xiujun, GUO Qinghua. Automatic Object Detection of Loess Landslide Based on Deep Learning[J]. Geomatics and Information Science of Wuhan University, 2020, 45(11): 1747-1755. DOI: 10.13203/j.whugis20200132
    [9]PAN Yin, SHAO Zhenfeng, CHENG Tao, HE Wei. Analysis of Urban Waterlogging Influence Based on Deep Learning Model[J]. Geomatics and Information Science of Wuhan University, 2019, 44(1): 132-138. DOI: 10.13203/j.whugis20170217
    [10]FAN Heng, XU Jun, DENG Yong, XIANG Jinhai. Behavior Recognition of Human Based on Deep Learning[J]. Geomatics and Information Science of Wuhan University, 2016, 41(4): 492-497. DOI: 10.13203/j.whugis20140110
  • Cited by

    Periodical cited type(5)

    1. 张爱竹,李忍忍,梁树能,孙根云,付航. 联合样本扩充和谱空迭代的高光谱影像分类. 武汉大学学报(信息科学版). 2025(01): 97-109 .
    2. 杜培军,张伟,张鹏,林聪,郭山川,胡泽周. 一种联合空谱特征的高光谱影像分类胶囊网络. 测绘学报. 2023(07): 1090-1104 .
    3. 高奎亮,刘冰,余岸竹,徐佰祺,胡伟,胡家玮. 高光谱影像少样例分类的无监督元学习方法. 测绘学报. 2023(11): 1941-1952 .
    4. 张彬,刘亮,李晓杰,周伟. 基于深度学习的高光谱影像分类方法研究. 红外与毫米波学报. 2023(06): 825-833 .
    5. 孙一帆,余旭初,谭熊,刘冰,高奎亮. 面向小样本高光谱影像分类的轻量化关系网络. 武汉大学学报(信息科学版). 2022(08): 1336-1348 .

    Other cited types(1)

Catalog

    Article views PDF downloads Cited by(6)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return