LI Peng, PU Sixun, LI Zhenhong, WANG Houjie. Coastline Change Monitoring of Jiaozhou Bay from Multi-source SAR and Optical Remote Sensing Images Since 2000[J]. Geomatics and Information Science of Wuhan University, 2020, 45(9): 1485-1492. DOI: 10.13203/j.whugis20180483
Citation: LI Peng, PU Sixun, LI Zhenhong, WANG Houjie. Coastline Change Monitoring of Jiaozhou Bay from Multi-source SAR and Optical Remote Sensing Images Since 2000[J]. Geomatics and Information Science of Wuhan University, 2020, 45(9): 1485-1492. DOI: 10.13203/j.whugis20180483

Coastline Change Monitoring of Jiaozhou Bay from Multi-source SAR and Optical Remote Sensing Images Since 2000

Funds: 

The National Natural Science Foundation of China 41806108

the National Key Research and Development Program of China 2017YFE0133500

the National Key Research and Development Program of China 2016YFA0600903

Shandong Provincial Natural Science Foundation ZR2016DB30

China Postdoctoral Science Foundation 2016M592248

Qingdao Indigenous Innovation Program 16-5-1-25-jch

Fundamental Research Funds for the Central Universities 201713039

Qingdao Postdoctoral Application Research Project 

More Information
  • Author Bio:

    LI Peng, PhD, lecturer, specializes in remote sensing of coastal environment. E-mail: pengli@ouc.edu.cn

  • Corresponding author:

    LI Zhenhong, PhD, professor. E-mail: Zhenhong.Li@newcastle.ac.uk

  • Received Date: December 11, 2018
  • Published Date: September 04, 2020
  • Monitoring the dynamic changes of coastline is of great significance to the protection and development of coastal zone. Combined with multi-source synthetic aperture radar (SAR) satellite images and optical satellite remote sensing images, using rule-based object-oriented information extraction, combined with artificial visual correction, the coastline length and water area change information of Jiaozhou Bay are extracted every five years from 2000 to 2018. The results show that the coastline length of Jiaozhou Bay has increased by 43.5 km and the area of Jiaozhou Bay has shrunk by 24.9 km2 in the past 20 years. The coastline changes are mainly influenced by artificial factors such as offshore aquaculture activities, port construction, and natural factors such as river sediment accumulation and tidal action. From the point of view of three key areas, human factors have led to the change of coastline and the shrinkage of sea area in Jiaozhou Bay. The shoreline changes in three key areas of Jiaozhou Bay, namely, Red Island on the north coast, Yellow Island on the west coast and Qingdao on the east coast, show that the shoreline changes in Jiaozhou Bay are mainly influenced by human factors.
  • [1]
    涂晔昕, 沈玉莲, 卢艺, 等.使用多源遥感影像监测深圳市海岸线变迁[J].海洋开发与管理, 2016, 33(10): 83-88 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hykfygl201610018

    Tu Yexin, Shen Yulian, Lu Yi, et al. Monitoring Coastline Changes of Shenzhen by Using Multi-source Remote Sensing Images[J]. Ocean Development and Management, 2016, 33(10):83-88 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hykfygl201610018
    [2]
    李清泉, 卢艺, 胡水波, 等.海岸带地理环境遥感监测综述[J].遥感学报, 2016, 20(5): 1 216-1 229 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ygxb201605042

    Li Qingquan, Lu Yi, Hu Shuibo, et al. Review of Remotely Sensed Geo-environmental Monitoring of Coastal Zones[J]. Journal of Remote Sensing, 2016, 20(5):1 216-1 229 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ygxb201605042
    [3]
    Cui B, Li X, Chang X, et al. Remote Sensing Monitoring of Coastline Change in the Yellow River Estuary (1976—2005)[C]. The 3rd International Congress on Image and Signal Processing (CISP), Yantai, China, 2010
    [4]
    Li W, Peng G. Continuous Monitoring of Coastline Dynamics in Western Florida with a 30-year Time Series of Landsat Imagery[J]. Remote Sensing of Environment, 2016, 179: 196-209 doi: 10.1016/j.rse.2016.03.031
    [5]
    Braga F, Tosi L, Prati C, et al. Shoreline Detection: Capability of COSMO-SkyMed and High-resolution Multispectral Images[J]. European Journal of Remote Sensing, 2013, 46(6): 837-853 doi: 10.5721/EuJRS20134650
    [6]
    Demir N, Oy S, Erdem F, et al. Integrated Shoreline Extraction Approach with Use of RASAT MS and Sentinel-1A SAR Images[J]. ISPRS Ann Photogramm Remote Sens Spatial Inf Sci, 2017, IV-2/W4: 445-449 doi: 10.5194/isprs-annals-IV-2-W4-445-2017
    [7]
    张庆君.高分三号卫星总体设计与关键技术[J].测绘学报, 2017, 46(3): 269-277 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=chxb201703002

    Zhang Qingjun. System Design and Key Technologies of the GF-3 Satellite[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(3):269-277 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=chxb201703002
    [8]
    An M, Sun Q, Hu J, et al. Coastline Detection with Gaofen-3 SAR Images Using an Improved FCM Method[J]. Sensors, 2018, 18(6): 431 http://www.ncbi.nlm.nih.gov/pubmed/29891809
    [9]
    范剑超, 姜大伟, 赵建华, 等. GF-3号SAR卫星遥感围填海监测方法研究——以大连金州湾为例[J].海洋科学, 2017, 41(12): 60-65 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hykx201712009

    Fan Jianchao, Jiang Dawei, Zhao Jianhua, et al. Marine Reclamation Monitoring Approach Research Based on GF-3 Remote Sensing Image: A Case Study of the Jinzhou Bay in Dalian[J]. Marine Sciences, 2017, 41(12): 60-65 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hykx201712009
    [10]
    Le Maire G, Dupuy S, Nouvellon Y, et al. Mapping Short-rotation Plantations at Regional Scale Using MODIS Time Series: Case of Eucalypt Plantations in Brazil[J]. Remote Sensing of Environment, 2014, 152: 136-149 doi: 10.1016/j.rse.2014.05.015
    [11]
    冯永玖, 袁佳宇, 宋丽君, 等.杭州湾海岸线信息的遥感提取及其变迁分析[J].遥感技术与应用, 2015, 30(2): 345-352 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ygjsyyy201502019

    Feng Yongjiu, Yuan Jiayu, Song Lijun, et al. Coastline Mapping and Change Detection Along Hangzhou Bay Using Remotely Sensed Imagery[J]. Remote Sensing Technology & Application, 2015, 30(2): 345-352 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ygjsyyy201502019
    [12]
    宫良, 宋新华.中心湾区, 现代与文脉辉映[J].走向世界, 2017 (20): 12-15 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zxsj201720002

    Gong Liang, Song Xinhua. Modern and Traditional Context Add Radiance to Each Other in the Central Bay Area[J]. Openings, 2017 (20): 12-15 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zxsj201720002
    [13]
    隋燕, 张丽, 穆晓东, 等.海南岛海岸线变迁遥感监测与分析[J].海洋学研究, 2018, 36(2): 36-43 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dhhy201802005

    Sui Yan, Zhang Li, Mu Xiaodong, et al. Coastline Change Monitoring and Analysis with Remote Sensing in Hainan Island[J]. Journal of Marine Sciences, 2018, 36(2): 36-43 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dhhy201802005
    [14]
    高志强, 刘向阳, 宁吉才, 等.基于遥感的近30 a中国海岸线和围填海面积变化及成因分析[J].农业工程学报, 2014, 30(12): 140-147 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=nygcxb201412017

    Gao Zhiqiang, Liu Xiangyang, Ning Jicai, et al. Analysis on Changes in Coastline and Reclamation Area and Its Causes Based on 30-year Satellite Data in China[J]. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(12):140-147 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=nygcxb201412017
    [15]
    樊建勇.青岛及周边地区海岸线动态变化的遥感监测[D].青岛: 中国科学院研究生院(海洋研究所), 2005

    Fan Jianyong. Monitoring Dynamic Changes of Coastline Around Qingdao and Its Adjacent Coastal Zone Using Remote Sensing[D]. Qingdao: The Institute of Oceanology, Chinese Academy of Sciences, 2005
    [16]
    中国海湾志编纂委员会.中国海湾志[M].北京:海洋出版社, 1993

    China Gulf Chronicle Compilation Commission. China Gulf Chronicle[M]. Beijing:Ocean Publishing House, 1993
  • Related Articles

    [1]ZHU Shaolin, YUE Dongjie, HE Lina, CHEN Jian, LIU Shengnan. BDS-2/BDS-3 Joint Triple-Frequency Precise Point Positioning Models and Bias Characteristic Analysis[J]. Geomatics and Information Science of Wuhan University, 2023, 48(12): 2049-2059. DOI: 10.13203/j.whugis20210273
    [2]GENG Jianghui, YAN Zhe, WEN Qiang. Multi-GNSS Satellite Clock and Bias Product Combination: The Third IGS Reprocessing Campaign[J]. Geomatics and Information Science of Wuhan University, 2023, 48(7): 1070-1081. DOI: 10.13203/j.whugis20230071
    [3]LIU Mingliang, AN Jiachun, WANG Zemin, ZHANG Baojun, SONG Xiangyu. Performance Analysis of BDS-3 Multi-frequency Pseudorange Positioning[J]. Geomatics and Information Science of Wuhan University, 2023, 48(6): 902-910. DOI: 10.13203/j.whugis20200714
    [4]YUAN Haijun, ZHANG Zhetao, HE Xiufeng, XU Tianyang, XU Xueyong. Stability Analysis of BDS-3 Satellite Differential Code Bias and Its Impacts on Single Point Positioning[J]. Geomatics and Information Science of Wuhan University, 2023, 48(3): 425-432. DOI: 10.13203/j.whugis20200517
    [5]ZHOU Ren-yu, HU Zhi-gang, CAI Hong-liang, ZHAO Zhen, RAO Yong-nan, CHEN Liang, ZHAO Qi-le. Analysis of Pseudorange and Carrier Ranging Deviation of BDS-3 Using Parabolic Directional Antenna[J]. Geomatics and Information Science of Wuhan University, 2021, 46(9): 1298-1308. DOI: 10.13203/j.whugis20200182
    [6]ZHANG Hui, HAO Jinming, LIU Weiping, ZHOU Rui, TIAN Yingguo. GPS/BDS Precise Point Positioning Model with Receiver DCB Parameters for Raw Observations[J]. Geomatics and Information Science of Wuhan University, 2019, 44(4): 495-500, 592. DOI: 10.13203/j.whugis20170119
    [7]ZOU Xuan, LI Zongnan, CHEN Liang, LI Min, TANG Weiming, SHI Chuang. Modeling BeiDou IGSO and MEO Satellites Code Pseudorange Variations[J]. Geomatics and Information Science of Wuhan University, 2018, 43(11): 1661-1666. DOI: 10.13203/j.whugis20160275
    [8]LI Xin, ZHANG Xiaohong, ZENG Qi, PAN Lin, ZHU Feng. The Estimation of BeiDou Satellite-induced Code Bias and Its Impact on the Precise Positioning[J]. Geomatics and Information Science of Wuhan University, 2017, 42(10): 1461-1467. DOI: 10.13203/j.whugis20160062
    [9]LOU Yidong, GONG Xiaopeng, GU Shengfeng, ZHENG Fu, YI Wenting. The Characteristic and Effect of Code Bias Variations of BeiDou[J]. Geomatics and Information Science of Wuhan University, 2017, 42(8): 1040-1046. DOI: 10.13203/j.whugis20150107
    [10]FAN Lei, ZHONG Shiming, LI Zishen, OU Jikun. Effect of Tracking Stations Distribution on the Estimation of Differential Code Biases by GPS Satellites Based on Uncombined Precise Point Positioning[J]. Geomatics and Information Science of Wuhan University, 2016, 41(3): 316-321. DOI: 10.13203/j.whugis20140114
  • Cited by

    Periodical cited type(28)

    1. 吕峥,孙群,温伯威,张付兵,马京振. 顾及形状相似性的道路与居民地协同化简方法. 地球信息科学学报. 2024(05): 1270-1282 .
    2. 铁占琦. 利用改进的Hausdorff距离匹配多尺度线要素. 地理空间信息. 2024(05): 62-65 .
    3. 王庆社,王雅欣,姜青香,郭思慧. “天地图·北京”多源道路数据融合关键技术研究. 北京测绘. 2024(06): 874-879 .
    4. 陈钉均,梁芮嘉. 基于特征聚类驾驶员服从度跟驰模型参数标定. 计算机仿真. 2024(10): 126-132 .
    5. 齐杰,王中辉,李驿言. 基于图卷积神经网络的道路网匹配. 测绘通报. 2023(12): 19-24+44 .
    6. 吴冰娇,王中辉,杨飞. 用于多尺度道路网匹配的语义相似性计算模型. 测绘科学. 2022(03): 166-173 .
    7. 蒋阳升,俞高赏,胡路,李衍. 基于聚类站点客流公共特征的轨道交通车站精细分类. 交通运输系统工程与信息. 2022(04): 106-112 .
    8. 周秀华,李乃强. 基于多种相似度特征的道路实体融合方法. 测绘通报. 2021(08): 102-105+157 .
    9. 秦育罗,宋伟东,张在岩,孙小荣. 顾及几何特征和拓扑连续性的道路网匹配方法. 测绘通报. 2021(08): 55-60 .
    10. 杨飞,王中辉. 河系几何相似性的层次度量方法. 地球信息科学学报. 2021(12): 2139-2150 .
    11. 程绵绵,孙群,季晓林,赵云鹏. 改进平均Fréchet距离法及在化简评价中的应用. 测绘科学. 2020(03): 170-177 .
    12. 赵元棣,田英杰,吴佳馨. 航空器飞行轨迹相似性度量及聚类分析. 中国科技论文. 2020(02): 249-254 .
    13. Wenyue GUO,Anzhu YU,Qun SUN,Shaomei LI,Qing XU,Bowei WEN,Yuanfu LI. A Multisource Contour Matching Method Considering the Similarity of Geometric Features. Journal of Geodesy and Geoinformation Science. 2020(03): 76-87 .
    14. 秦育罗,郭冰,孙小荣. 改进Hausdorff距离及其在多尺度道路网匹配中的应用. 测绘科学技术学报. 2020(03): 313-318 .
    15. 郝志伟,李成名,殷勇,武鹏达,吴伟. 一种基于Fréchet距离的断裂等高线内插算法. 测绘通报. 2019(01): 65-68+74 .
    16. 郭文月,刘海砚,孙群,余岸竹,丁梓越. 顾及几何特征相似性的多源等高线匹配方法. 测绘学报. 2019(05): 643-653 .
    17. 宗琴,彭荃,秦万英. 一种基于模糊矩阵的空间面对象相似性度量算法. 北京测绘. 2019(10): 1218-1221 .
    18. 李兆兴,翟京生,武芳. 线要素综合的形状相似性评价方法. 武汉大学学报(信息科学版). 2019(12): 1859-1864 .
    19. 周家新,陈建勇,单志超,陈长康. 航空磁探中潜艇目标的联合估计检测方法研究. 兵工学报. 2018(05): 833-840 .
    20. 郭宁宁,盛业华,吕海洋,黄宝群,张思阳. 径向基函数神经网络的路网自动匹配算法. 测绘科学. 2018(03): 45-50 .
    21. 张瀚,李静,吕品,徐永志,刘格林. 六角格网的弧线矢量数据量化拟合方法. 计算机辅助设计与图形学学报. 2018(04): 557-567 .
    22. 邵世维,刘辉,肖立霞,王恒. 一种基于Fréchet距离的复杂线状要素匹配方法. 武汉大学学报(信息科学版). 2018(04): 516-521 .
    23. 苏满佳,张逸鸿,谢荣臻,朱海飞,管贻生,毛世鑫. 连续软体机器人的结构范型与形态复现. 机器人. 2018(05): 640-647+672 .
    24. 宗琴,姜树辉,刘艳霞. 多尺度矢量地图中模糊相似变换及其度量模型. 测绘科学. 2018(11): 72-78 .
    25. 郭文月,刘海砚,孙群,余岸竹,季晓林. 利用最长公共子序列度量线要素相似性的方法. 测绘科学技术学报. 2018(05): 518-523 .
    26. 郭宁宁,盛业华,黄宝群,吕海洋,张思阳. 基于人工神经网络的多特征因子路网匹配算法. 地球信息科学学报. 2016(09): 1153-1159 .
    27. 杨亚辉. 利用几何相似性快速测量鱼重的数学模型. 电子技术与软件工程. 2016(20): 182-183 .
    28. 逯跃锋,张奎,刘硕,吴跃,赵硕,李强,冯晨. 一种基于斜率差和方位角的矢量数据匹配算法. 山东大学学报(工学版). 2016(06): 31-39 .

    Other cited types(30)

Catalog

    Article views (1530) PDF downloads (194) Cited by(58)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return