DAI Qing, SUI Lifen, TIAN Yuan, TIAN Yijun, ZENG Tian. Gaussian Mixture Filter Based on Variational Bayesian Learning Optimization and Its Application to Integrated Navigation[J]. Geomatics and Information Science of Wuhan University, 2019, 44(5): 699-705. DOI: 10.13203/j.whugis20170235
Citation: DAI Qing, SUI Lifen, TIAN Yuan, TIAN Yijun, ZENG Tian. Gaussian Mixture Filter Based on Variational Bayesian Learning Optimization and Its Application to Integrated Navigation[J]. Geomatics and Information Science of Wuhan University, 2019, 44(5): 699-705. DOI: 10.13203/j.whugis20170235

Gaussian Mixture Filter Based on Variational Bayesian Learning Optimization and Its Application to Integrated Navigation

Funds: 

The National Natural Science Foundation of China 41674016

The National Natural Science Foundation of China 41274016

More Information
  • Author Bio:

    DAI Qing, PhD candidate, specializes in GNSS data processing and its application. E-mail:Geo_DaiQing@hotmail.com

  • Received Date: May 04, 2018
  • Published Date: May 04, 2019
  • We present a novel Gaussian mixture filter (GMF) improved by variational Bayesian learning. The method is mainly used in time-differenced carrier phase/strap-down Inertial Navigation System integrated navigation to deal with parameter estimation of Gaussian mixture model in non-Gaussian noise environment. By means of variational Bayesian learning theory, this algorithm accurately and efficiently estimates parameters of GMF, and further refines the stochastic model. And it improves accuracy of GMF, reduces the computational complexity, and improves the effectiveness. The experimental results illustrate that the proposed filter substantially outperforms the existing algorithm in terms of estimation accuracy, and is computationally much more efficient. It provides theoretical support for integrated navigation data fusion strategy based on GMF.
  • [1]
    Han S, Wang J. Integrated GPS/INS Navigation System with Dual-Rate Kalman Filter [J]. GPS Solutions, 2012, 16(3): 389-404 doi: 10.1007/s10291-011-0240-x
    [2]
    Zhao Y, Becker M, Becker D, et al. Improving the Performance of Tight-Coupled GPS/INS Navigation by Using Time-Differenced GPS-Carrier-Phase Measurements and Low-Cost MEMS IMU [J]. Gyroscopy and Navigation, 2015, 6(2):133-142 doi: 10.1134/S2075108715020108
    [3]
    Chang G. Robust Kalman Filtering Based on Mahalanobis Distance as Outlier Judging Criterion [J]. Journal of Geodesy, 2014, 88(4): 391-401 doi: 10.1007/s00190-013-0690-8
    [4]
    Alspach D L, Sorenson H W. Nonlinear Bayesian Estimation Using Gaussian Sum Approximations [J]. IEEE Transactions on Automatic Control, 1972, 17(4): 439-448 doi: 10.1109/TAC.1972.1100034
    [5]
    曹轶之.非高斯/非线性滤波算法研究及其在GPS动态定位中的应用[D].郑州: 信息工程大学, 2012 http://cdmd.cnki.com.cn/Article/CDMD-90005-1013161239.htm

    Cao Yizhi. Research of Non-Gaussian/Nonlinear Filtering Algorithms and Its Applications in GPS Kinematic Positioning [D]. Zhengzhou: Information Engineering University, 2012 http://cdmd.cnki.com.cn/Article/CDMD-90005-1013161239.htm
    [6]
    唐炉亮, 杨雪, 靳晨, 等.基于约束高斯混合模型的车道信息获取[J].武汉大学学报·信息科学版, 2017, 42(3): 341-347 http://ch.whu.edu.cn/CN/abstract/abstract5684.shtml

    Tang Luliang, Yang Xue, Jin Chen, et al. Traffic Lane Number Extraction Based on the Constrained Gaussian Mixture Model [J]. Geomatics and Information Science of Wuhan University, 2017, 42(3): 341-347 http://ch.whu.edu.cn/CN/abstract/abstract5684.shtml
    [7]
    Ishikawa Y, Takeuchi I, Nakano R. Multi-directional Search from the Primitive Initial Point for Gaussian Mixture Estimation Using Variational Bayes Method [J]. Neural Networks, 2010, 23(3): 356-364 doi: 10.1016/j.neunet.2009.08.003
    [8]
    Lim K L, Wang H. MAP Approximation to the Variational Bayes Gaussian Mixture Model and Application [J]. Soft Computing, 2017 (3): 1-13 http://cn.bing.com/academic/profile?id=1e46675d931c561e10ea5fa8b913bda4&encoded=0&v=paper_preview&mkt=zh-cn
    [9]
    Vrettas M D, Cornford D, Opper M. Estimating Parameters in Stochastic Systems: A Variational Bayesian Approach [J]. Physica D Nonlinear Phenomena, 2011, 240(23): 1877-1900 doi: 10.1016/j.physd.2011.08.013
    [10]
    Miao Z Y, Lv Y L, Xu D J, et al. Analysis of a Variational Bayesian Adaptive Cubature Kalman Filter Tracking Loop for High Dynamic Conditions [J]. GPS Solutions, 2017, 21(1): 111-122 doi: 10.1007/s10291-015-0510-0
    [11]
    Stepanov O A, Chelpanov I B, Motorin A V. Accuracy of Sensor Bias Estimation and Its Relationship with Allan Variance [J]. Gyroscopy and Navigation, 2017, 8(1): 51-57 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=725670abb056ae1e19b5d91071445a17
    [12]
    Niu X J, Chen Q J, Zang Q. Using Allan Variance to Analyze the Error Characteristics of GNSS Positioning [J]. GPS Solutions, 2014, 18(2): 231-242 doi: 10.1007/s10291-013-0324-x
    [13]
    Niu X, Li Y, Zhang Q, et al. Observability Analysis of Non-holonomic Constraints for Land-Vehicle Navigation Systems [J]. Journal of Global Positioning Systems, 2012, 11(1): 80-88 doi: 10.5081/jgps
  • Related Articles

    [1]ZHAO Binbin, XIE Jianxiang, ZHANG Hongkui, WANG Liwei, WANG Qian. Geographic Line Extraction Algorithm Based on Morphing Transformation Techniques[J]. Geomatics and Information Science of Wuhan University, 2025, 50(1): 174-183. DOI: 10.13203/j.whugis20220493
    [2]WANG Pengxin, CHEN Chi, ZHANG Yue, ZHANG Shuyu, LIU Junming. Estimation of Winter Wheat Yield Using Assimilated Bi-variables and PCA-Copula Method[J]. Geomatics and Information Science of Wuhan University, 2022, 47(8): 1201-1212. DOI: 10.13203/j.whugis20220038
    [3]XIE Yanxin, WU Xiaocheng, HU Xiong. Using One-Dimensional Variational Assimilation Algorithm to Obtain Atmospheric Refractive Index from Ground-Based GPS Phase Delay[J]. Geomatics and Information Science of Wuhan University, 2018, 43(7): 1042-1047. DOI: 10.13203/j.whugis20160238
    [4]LI Jingzhong, ZHANG Jinming. A Morphing Method for Smooth Area Features Based on Fourier Transform[J]. Geomatics and Information Science of Wuhan University, 2017, 42(8): 1104-1109. DOI: 10.13203/j.whugis20150157
    [5]OU Ming, ZHEN Weimin, XU Jisheng, YU Xiao, LIU Yiwen, LIU Dun. Regional Ionospheric TEC Reconstruction by Data Assimilation Technique[J]. Geomatics and Information Science of Wuhan University, 2017, 42(8): 1075-1081. DOI: 10.13203/j.whugis20150297
    [6]WANG Hongwei, HUANG Chunlin, HOU Jinliang, LI Xiaoying. Estimation of Snow Depth from Multi-source Data Fusion Based on Data Assimilation Algorithm[J]. Geomatics and Information Science of Wuhan University, 2016, 41(6): 848-852. DOI: 10.13203/j.whugis20140568
    [7]SONG Fucheng, SHI Shuangshuang, FENG Jiandi. Construction of Ionospheric TEC Assimilation Model Based on Chapman Function[J]. Geomatics and Information Science of Wuhan University, 2016, 41(6): 784-790. DOI: 10.13203/j.whugis20150101
    [8]ZHANG Xianfeng, ZHAO Jiepeng. System for Soil Moisture Retrieval and Data Assimilation from Remotely Sensed Data in Arid Regions[J]. Geomatics and Information Science of Wuhan University, 2012, 37(7): 794-799.
    [9]WU Mingguang, LUE Guonian, CHEN Taisheng. Data Structure Assimilation of Marker Symbol[J]. Geomatics and Information Science of Wuhan University, 2011, 36(2): 239-243.
    [10]CHEN Rongyuan, LIU Guoying, WANG Leiguang, QIN Qianqing. Fusion Algorithm of Multispectral and Panchromatic Images Based on the Data Assimilation[J]. Geomatics and Information Science of Wuhan University, 2009, 34(8): 919-923.
  • Cited by

    Periodical cited type(13)

    1. 杨忠荣. 低成本车载RTK高精度定位方法. 地理空间信息. 2025(03): 96-100 .
    2. 程建华,陈思成,臧楠,程思翔,赵国晶,马子凡. 附加自适应短时高程变化率约束的PPP/INS紧组合增强模型. 测绘学报. 2024(09): 1761-1776 .
    3. 王勋,崔先强,高天杭. 动力学模型自适应滤波算法研究. 武汉大学学报(信息科学版). 2023(05): 741-748 .
    4. 张一,尹潇,宋海娜. 运动方向约束的自适应SRUKF目标跟踪算法. 导航定位学报. 2023(05): 53-59 .
    5. 李清泉,吕世望,陈智鹏,殷煜,张德津. 冬奥会国家速滑馆超大地坪平整度快速测量. 武汉大学学报(信息科学版). 2022(03): 325-333 .
    6. 辜声峰,戴春齐,何成鹏,方礼喆,王梓豪. 面向城市车载导航的多系统PPP-RTK/VIO半紧组合算法性能分析. 武汉大学学报(信息科学版). 2021(12): 1852-1861 .
    7. 陶晓晓,卢小平,路泽忠,周雨石,余振宝. WiFi融合环境光定位方法研究. 测绘科学. 2020(06): 57-61+72 .
    8. 张辰东,王兆瑞. 一种长隧道内高速列车实时高精度定位方法. 计算机仿真. 2020(09): 124-128+188 .
    9. 尹潇,柴洪洲,向民志,杜祯强. 附加运动学约束的BDS抗差UKF导航算法. 测绘学报. 2020(11): 1399-1406 .
    10. 王诒国,潘孝星. 基于马氏距离的抗差卡尔曼滤波算法在组合导航中的应用. 北京测绘. 2020(12): 1810-1814 .
    11. 吕大千,曾芳玲,欧阳晓凤,于合理. 时频传递的改进整数相位钟方法. 测绘学报. 2019(07): 889-897 .
    12. 邓中亮,尹露,唐诗浩,刘延旭,宋汶轩. 室内定位关键技术综述. 导航定位与授时. 2018(03): 14-23 .
    13. 张迪,施昆,李照永. 移动测量系统的GNSS/INS组合定位方法的对比研究. 软件. 2018(08): 110-116 .

    Other cited types(18)

Catalog

    Article views PDF downloads Cited by(31)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return