TANG Jun, ZHONG Zhengyu, DING Mingfei, WU Xuequn. Ionospheric TEC Prediction in China Based on ENN Improved by PSO Algorithm[J]. Geomatics and Information Science of Wuhan University, 2024, 49(10): 1867-1878. DOI: 10.13203/j.whugis20220254
Citation: TANG Jun, ZHONG Zhengyu, DING Mingfei, WU Xuequn. Ionospheric TEC Prediction in China Based on ENN Improved by PSO Algorithm[J]. Geomatics and Information Science of Wuhan University, 2024, 49(10): 1867-1878. DOI: 10.13203/j.whugis20220254

Ionospheric TEC Prediction in China Based on ENN Improved by PSO Algorithm

More Information
  • Received Date: December 27, 2022
  • Available Online: April 06, 2023
  • Objectives 

    Accurate prediction of ionospheric total electron content (TEC) is of great research significance to improve the accuracy of global navigation satellite system (GNSS) navigation and positioning.

    Methods 

    We propose an ionospheric TEC prediction model based on particle swarm optimization (PSO) algorithm and Elman neural network (ENN). First, high accurate regional ionospheric map (RIM) in China is set up by using the GNSS observation data from the crustal movement observation network of China (CMONOC) in 2018. Second, the RIM TEC data are used for forecasting research.

    Results 

    During the quiet period and disturbance period, the best time scale for training set is 21 d. For the 5 d sliding prediction, the root mean square error (RMSE) of the PSO-ENN model during the quiet period and disturbance period are decreased by 27.6% and 20.5%, respectively. When using the global ionospheric map (GIM) published by center for orbit determination in Europe (CODE) in China region for different grid points prediction, the average RMSE of the PSO-ENN model is lower than the CODE 1-day predicted GIM (C1PG) by back propagation neural network (BPNN) model and ENN model. For the 30-day sliding prediction in August 2018 based on RIM TEC in China region, the average RMSE of the PSO-ENN model are 24.8% and 14.3% lower than that of BPNN and ENN models, respectively.

    Conclusions 

    The proposed model has better prediction accuracy and stability both in the quiet period and disturbance period.

  • [1]
    毛田, 万卫星, 刘立波. 用经验正交函数构造武汉地区电子浓度总含量的经验模式[J]. 地球物理学报, 2005, 48(4): 751-758.

    Mao Tian, Wan Weixing, Liu Libo. An EOF-Based Empirical Model of TEC over Wuhan[J]. Chinese Journal of Geophysics, 2005, 48(4): 751-758.
    [2]
    孙佳龙, 郭金运, 郭淑艳. 利用夹角余弦和聚类分析的电离层TEC混沌预测[J]. 武汉大学学报(信息科学版), 2014, 39(4): 441-444.

    Sun Jialong, Guo Jinyun, Guo Shuyan. Chaotic Properties and Prediction of Ionospheric Total Electron Content Based on Cosine and Cluster Analysis[J]. Geomatics and Information Science of Wuhan University, 2014, 39(4): 441-444.
    [3]
    钟慧鑫, 肖艳鲁, 冯建迪, 等. IRI2016模型的TEC预测能力分析[J]. 测绘科学, 2021, 46(10): 54-66.

    Zhong Huixin, Xiao Yanlu, Feng Jiandi, et al. Analysis of TEC Prediction Ability of IRI2016 Model[J]. Science of Surveying and Mapping, 2021, 46(10): 54-66.
    [4]
    李志刚, 程宗颐, 冯初刚, 等. 电离层预报模型研究[J]. 地球物理学报, 2007, 50(2): 327-337.

    Li Zhigang, Cheng Zongyi, Feng Chugang, et al. A Study of Prediction Models for Ionosphere[J]. Chinese Journal of Geophysics, 2007, 50(2): 327-337.
    [5]
    陈鹏, 姚宜斌, 吴寒. 利用时间序列分析预报电离层TEC[J]. 武汉大学学报(信息科学版), 2011, 36(3): 267-270.

    Chen Peng, Yao Yibin, Wu Han. TEC Prediction of Ionosphere Based on Time Series Analysis[J]. Geomatics and Information Science of Wuhan University, 2011, 36(3): 267-270.
    [6]
    李子申, 王宁波, 李敏, 等. 国际GNSS服务组织全球电离层TEC格网精度评估与分析[J]. 地球物理学报, 2017, 60(10): 3718-3729.

    Li Zishen, Wang Ningbo, Li Min, et al. Evaluation and Analysis of the Global Ionospheric TEC Map in the Frame of International GNSS Services[J]. Chinese Journal of Geophysics, 2017, 60(10): 3718-3729.
    [7]
    章红平. 基于地基GPS的中国区域电离层监测与延迟改正研究[D]. 上海: 中国科学院上海天文台, 2006.

    Zhang Hongping. Study on Ionospheric Monitoring and Delay Correction in China Area Based on Ground-Based GPS[D].Shanghai: Shanghai Astronomical Observatory, Chinese Academy of Sciences, 2006.
    [8]
    张强, 章红平, 赵齐乐, 等. 利用最小二乘配置预报全球电离层总电子含量[J]. 大地测量与地球动力学, 2014, 34(6): 86-91.

    Zhang Qiang, Zhang Hongping, Zhao Qile, et al. Global Ionospheric TEC Prediction Based on Least-Squares Collocation Method[J]. Journal of Geodesy and Geodynamics, 2014, 34(6): 86-91.
    [9]
    王喜江, 边少锋, 李子申, 等. 利用半参数核估计法预报全球电离层总电子含量[J]. 地球物理学报, 2020, 63(4): 1271-1281.

    Wang Xijiang, Bian Shaofeng, Li Zishen, et al. Prediction of Global Ionospheric TEC Using the Semiparametric Kernel Estimation Method[J]. Chinese Journal of Geophysics, 2020, 63(4): 1271-1281.
    [10]
    邱封钦, 潘雄, 罗小敏, 等. 综合半参数核估计和自回归补偿的全球电离层总电子含量预报模型[J]. 地球物理学报, 2021, 64(9): 3021-3029.

    Qiu Fengqin, Pan Xiong, Luo Xiaomin, et al. Global Ionospheric TEC Prediction Model Integrated with Semiparametric Kernel Estimation and Autoregressive Compensation[J]. Chinese Journal of Geophysics, 2021, 64(9): 3021-3029.
    [11]
    Liu L, Zou S S, Yao Y B, et al. Forecasting Global Ionospheric TEC Using Deep Learning Approach[J]. Space Weather, 2020, 18(11): e2020SW002501.
    [12]
    汤俊, 毛文飞. 多尺度ARMA残差修正模型震前电离层TEC异常探测[J]. 武汉大学学报(信息科学版), 2019, 44(6): 791-798.

    Tang Jun, Mao Wenfei. Multi-Scale ARMA Residual Correction Model for Detecting Pre-earthquake Ionospheric Anomalies[J]. Geomatics and Information Science of Wuhan University, 2019, 44(6): 791-798.
    [13]
    陆建华, 王斌, 胡伍生. 利用BP神经网络改进电离层短期预报模型[J]. 测绘科学技术学报, 2017, 34(1): 1-4.

    Lu Jianhua, Wang Bin, Hu Wusheng. Improved Prediction Model of Ionospheric TEC by BP Neural Network[J]. Journal of Geomatics Science and Technology, 2017, 34(1): 1-4.
    [14]
    Sivavaraprasad G, Deepika V S, Sreenivasarao D, et al. Performance Evaluation of Neural Network TEC Forecasting Models over Equatorial Low-Latitude Indian GNSS Station[J]. Geodesy and Geodynamics, 2020, 11(3): 192-201.
    [15]
    鲁铁定, 黄佳伟, 贺小星, 等. EWT-Elman组合模型短期电离层TEC预报[J]. 大地测量与地球动力学, 2021, 41(7): 666-671.

    Lu Tieding, Huang Jiawei, He Xiaoxing, et al. Short-Term Ionospheric TEC Prediction Using EWT-Elman Combination Model[J]. Journal of Geodesy and Geodynamics, 2021, 41(7): 666-671.
    [16]
    黄佳伟, 鲁铁定, 贺小星, 等. Prophet-Elman残差改正电离层TEC短期预报模型[J]. 大地测量与地球动力学, 2021, 41(8): 783-788.

    Huang Jiawei, Lu Tieding, He Xiaoxing, et al. Short Term Prediction Model of Ionospheric TEC Based on Residual Correction of Prophet-Elman[J]. Journal of Geodesy and Geodynamics, 2021, 41(8): 783-788.
    [17]
    李涌涛, 李建文, 魏绒绒, 等. 全球电离层TEC格网时空变化特性分析[J]. 武汉大学学报(信息科学版), 2020, 45(5): 776-783.

    Li Yongtao, Li Jianwen, Wei Rongrong, et al. Analysis of Temporal and Spatial Variation Characteristics of Global Ionospheric TEC Grid[J]. Geomatics and Information Science of Wuhan University, 2020, 45(5): 776-783.
    [18]
    柳景斌, 王泽民, 章红平, 等. 几种地基GPS区域电离层TEC建模方法的比较及其一致性研究[J]. 武汉大学学报(信息科学版), 2008, 33(5): 479-483.

    Liu Jingbin, Wang Zemin, Zhang Hongping, et al. Comparison and Consistency Research of Regional Ionospheric TEC Models Based on GPS Measurements[J]. Geomatics and Information Science of Wuhan University, 2008, 33(5): 479-483.
    [19]
    薛军琛. 中国地区电离层延迟函数模型建立与精度估计[D]. 青岛: 山东科技大学, 2010.

    Xue Junchen. Establishment and Accuracy Estimation of Ionospheric Delay Function Model in China Area[D].Qingdao: Shandong University of Science and Technology, 2010.
    [20]
    史坤朋, 郭金运, 张永明, 等. 基于CMONOC GPS数据的SSA电离层预测模型研究[J]. 大地测量与地球动力学, 2019, 39(11): 1153-1158.

    Shi Kunpeng, Guo Jinyun, Zhang Yongming, et al. Ionospheric Prediction of SSA Model Based on CMONOC GPS[J]. Journal of Geodesy and Geodynamics, 2019, 39(11): 1153-1158.
    [21]
    Xu X, Wang X Z, Li K, et al. RETRACTED ARTICLE: Source Discrimination of Mine Water Inrush Based on Elman Neural Network Globally Optimized by Genetic Algorithm[J]. Arabian Journal of Geosciences, 2021, 14(13): 1204.
    [22]
    朱其萍, 徐红玉, 王晓强, 等. 基于PSO-BP的超声滚挤压轴承套圈表面加工硬化程度预测[J]. 锻压技术, 2021, 46(11): 190-196.

    Zhu Qiping, Xu Hongyu, Wang Xiaoqiang, et al. Prediction on Degree of Work Hardening for Surface of Bearing Ring by Ultrasonic Rolling Extrusion Based on PSO-BP[J]. Forging & Stamping Technology, 2021, 46(11): 190-196.
    [23]
    Gonzalez W D, Joselyn J A, Kamide Y, et al. What Is a Geomagnetic Storm?[J]. Journal of Geophysical Research: Space Physics, 1994, 99(A4): 5771-5792.
    [24]
    Loewe C A, Prölss G W. Classification and Mean Behavior of Magnetic Storms[J]. Journal of Geophysical Research: Space Physics, 1997, 102(A7): 14209-14213.
    [25]
    Ke F Y,Wang J L, Tu M H,et al. Enhancing Relia‑bility of Seismo-Ionospheric Anomaly Detection with the Linear Correlation Between Total Electron Content and the Solar Activity Index F10.7: Nepal Earthquake 2015[J]. Journal of Geodynamics, 2018, 121: 88-95.
  • Cited by

    Periodical cited type(28)

    1. 吕峥,孙群,温伯威,张付兵,马京振. 顾及形状相似性的道路与居民地协同化简方法. 地球信息科学学报. 2024(05): 1270-1282 .
    2. 铁占琦. 利用改进的Hausdorff距离匹配多尺度线要素. 地理空间信息. 2024(05): 62-65 .
    3. 王庆社,王雅欣,姜青香,郭思慧. “天地图·北京”多源道路数据融合关键技术研究. 北京测绘. 2024(06): 874-879 .
    4. 陈钉均,梁芮嘉. 基于特征聚类驾驶员服从度跟驰模型参数标定. 计算机仿真. 2024(10): 126-132 .
    5. 齐杰,王中辉,李驿言. 基于图卷积神经网络的道路网匹配. 测绘通报. 2023(12): 19-24+44 .
    6. 吴冰娇,王中辉,杨飞. 用于多尺度道路网匹配的语义相似性计算模型. 测绘科学. 2022(03): 166-173 .
    7. 蒋阳升,俞高赏,胡路,李衍. 基于聚类站点客流公共特征的轨道交通车站精细分类. 交通运输系统工程与信息. 2022(04): 106-112 .
    8. 周秀华,李乃强. 基于多种相似度特征的道路实体融合方法. 测绘通报. 2021(08): 102-105+157 .
    9. 秦育罗,宋伟东,张在岩,孙小荣. 顾及几何特征和拓扑连续性的道路网匹配方法. 测绘通报. 2021(08): 55-60 .
    10. 杨飞,王中辉. 河系几何相似性的层次度量方法. 地球信息科学学报. 2021(12): 2139-2150 .
    11. 程绵绵,孙群,季晓林,赵云鹏. 改进平均Fréchet距离法及在化简评价中的应用. 测绘科学. 2020(03): 170-177 .
    12. 赵元棣,田英杰,吴佳馨. 航空器飞行轨迹相似性度量及聚类分析. 中国科技论文. 2020(02): 249-254 .
    13. Wenyue GUO,Anzhu YU,Qun SUN,Shaomei LI,Qing XU,Bowei WEN,Yuanfu LI. A Multisource Contour Matching Method Considering the Similarity of Geometric Features. Journal of Geodesy and Geoinformation Science. 2020(03): 76-87 .
    14. 秦育罗,郭冰,孙小荣. 改进Hausdorff距离及其在多尺度道路网匹配中的应用. 测绘科学技术学报. 2020(03): 313-318 .
    15. 郝志伟,李成名,殷勇,武鹏达,吴伟. 一种基于Fréchet距离的断裂等高线内插算法. 测绘通报. 2019(01): 65-68+74 .
    16. 郭文月,刘海砚,孙群,余岸竹,丁梓越. 顾及几何特征相似性的多源等高线匹配方法. 测绘学报. 2019(05): 643-653 .
    17. 宗琴,彭荃,秦万英. 一种基于模糊矩阵的空间面对象相似性度量算法. 北京测绘. 2019(10): 1218-1221 .
    18. 李兆兴,翟京生,武芳. 线要素综合的形状相似性评价方法. 武汉大学学报(信息科学版). 2019(12): 1859-1864 .
    19. 周家新,陈建勇,单志超,陈长康. 航空磁探中潜艇目标的联合估计检测方法研究. 兵工学报. 2018(05): 833-840 .
    20. 郭宁宁,盛业华,吕海洋,黄宝群,张思阳. 径向基函数神经网络的路网自动匹配算法. 测绘科学. 2018(03): 45-50 .
    21. 张瀚,李静,吕品,徐永志,刘格林. 六角格网的弧线矢量数据量化拟合方法. 计算机辅助设计与图形学学报. 2018(04): 557-567 .
    22. 邵世维,刘辉,肖立霞,王恒. 一种基于Fréchet距离的复杂线状要素匹配方法. 武汉大学学报(信息科学版). 2018(04): 516-521 .
    23. 苏满佳,张逸鸿,谢荣臻,朱海飞,管贻生,毛世鑫. 连续软体机器人的结构范型与形态复现. 机器人. 2018(05): 640-647+672 .
    24. 宗琴,姜树辉,刘艳霞. 多尺度矢量地图中模糊相似变换及其度量模型. 测绘科学. 2018(11): 72-78 .
    25. 郭文月,刘海砚,孙群,余岸竹,季晓林. 利用最长公共子序列度量线要素相似性的方法. 测绘科学技术学报. 2018(05): 518-523 .
    26. 郭宁宁,盛业华,黄宝群,吕海洋,张思阳. 基于人工神经网络的多特征因子路网匹配算法. 地球信息科学学报. 2016(09): 1153-1159 .
    27. 杨亚辉. 利用几何相似性快速测量鱼重的数学模型. 电子技术与软件工程. 2016(20): 182-183 .
    28. 逯跃锋,张奎,刘硕,吴跃,赵硕,李强,冯晨. 一种基于斜率差和方位角的矢量数据匹配算法. 山东大学学报(工学版). 2016(06): 31-39 .

    Other cited types(30)

Catalog

    Article views (647) PDF downloads (68) Cited by(58)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return