Citation: | TANG Jun, ZHONG Zhengyu, DING Mingfei, WU Xuequn. Ionospheric TEC Prediction in China Based on ENN Improved by PSO Algorithm[J]. Geomatics and Information Science of Wuhan University, 2024, 49(10): 1867-1878. DOI: 10.13203/j.whugis20220254 |
Accurate prediction of ionospheric total electron content (TEC) is of great research significance to improve the accuracy of global navigation satellite system (GNSS) navigation and positioning.
We propose an ionospheric TEC prediction model based on particle swarm optimization (PSO) algorithm and Elman neural network (ENN). First, high accurate regional ionospheric map (RIM) in China is set up by using the GNSS observation data from the crustal movement observation network of China (CMONOC) in 2018. Second, the RIM TEC data are used for forecasting research.
During the quiet period and disturbance period, the best time scale for training set is 21 d. For the 5 d sliding prediction, the root mean square error (RMSE) of the PSO-ENN model during the quiet period and disturbance period are decreased by 27.6% and 20.5%, respectively. When using the global ionospheric map (GIM) published by center for orbit determination in Europe (CODE) in China region for different grid points prediction, the average RMSE of the PSO-ENN model is lower than the CODE 1-day predicted GIM (C1PG) by back propagation neural network (BPNN) model and ENN model. For the 30-day sliding prediction in August 2018 based on RIM TEC in China region, the average RMSE of the PSO-ENN model are 24.8% and 14.3% lower than that of BPNN and ENN models, respectively.
The proposed model has better prediction accuracy and stability both in the quiet period and disturbance period.
[1] |
毛田, 万卫星, 刘立波. 用经验正交函数构造武汉地区电子浓度总含量的经验模式[J]. 地球物理学报, 2005, 48(4): 751-758.
Mao Tian, Wan Weixing, Liu Libo. An EOF-Based Empirical Model of TEC over Wuhan[J]. Chinese Journal of Geophysics, 2005, 48(4): 751-758.
|
[2] |
孙佳龙, 郭金运, 郭淑艳. 利用夹角余弦和聚类分析的电离层TEC混沌预测[J]. 武汉大学学报(信息科学版), 2014, 39(4): 441-444.
Sun Jialong, Guo Jinyun, Guo Shuyan. Chaotic Properties and Prediction of Ionospheric Total Electron Content Based on Cosine and Cluster Analysis[J]. Geomatics and Information Science of Wuhan University, 2014, 39(4): 441-444.
|
[3] |
钟慧鑫, 肖艳鲁, 冯建迪, 等. IRI2016模型的TEC预测能力分析[J]. 测绘科学, 2021, 46(10): 54-66.
Zhong Huixin, Xiao Yanlu, Feng Jiandi, et al. Analysis of TEC Prediction Ability of IRI2016 Model[J]. Science of Surveying and Mapping, 2021, 46(10): 54-66.
|
[4] |
李志刚, 程宗颐, 冯初刚, 等. 电离层预报模型研究[J]. 地球物理学报, 2007, 50(2): 327-337.
Li Zhigang, Cheng Zongyi, Feng Chugang, et al. A Study of Prediction Models for Ionosphere[J]. Chinese Journal of Geophysics, 2007, 50(2): 327-337.
|
[5] |
陈鹏, 姚宜斌, 吴寒. 利用时间序列分析预报电离层TEC[J]. 武汉大学学报(信息科学版), 2011, 36(3): 267-270.
Chen Peng, Yao Yibin, Wu Han. TEC Prediction of Ionosphere Based on Time Series Analysis[J]. Geomatics and Information Science of Wuhan University, 2011, 36(3): 267-270.
|
[6] |
李子申, 王宁波, 李敏, 等. 国际GNSS服务组织全球电离层TEC格网精度评估与分析[J]. 地球物理学报, 2017, 60(10): 3718-3729.
Li Zishen, Wang Ningbo, Li Min, et al. Evaluation and Analysis of the Global Ionospheric TEC Map in the Frame of International GNSS Services[J]. Chinese Journal of Geophysics, 2017, 60(10): 3718-3729.
|
[7] |
章红平. 基于地基GPS的中国区域电离层监测与延迟改正研究[D]. 上海: 中国科学院上海天文台, 2006.
Zhang Hongping. Study on Ionospheric Monitoring and Delay Correction in China Area Based on Ground-Based GPS[D].Shanghai: Shanghai Astronomical Observatory, Chinese Academy of Sciences, 2006.
|
[8] |
张强, 章红平, 赵齐乐, 等. 利用最小二乘配置预报全球电离层总电子含量[J]. 大地测量与地球动力学, 2014, 34(6): 86-91.
Zhang Qiang, Zhang Hongping, Zhao Qile, et al. Global Ionospheric TEC Prediction Based on Least-Squares Collocation Method[J]. Journal of Geodesy and Geodynamics, 2014, 34(6): 86-91.
|
[9] |
王喜江, 边少锋, 李子申, 等. 利用半参数核估计法预报全球电离层总电子含量[J]. 地球物理学报, 2020, 63(4): 1271-1281.
Wang Xijiang, Bian Shaofeng, Li Zishen, et al. Prediction of Global Ionospheric TEC Using the Semiparametric Kernel Estimation Method[J]. Chinese Journal of Geophysics, 2020, 63(4): 1271-1281.
|
[10] |
邱封钦, 潘雄, 罗小敏, 等. 综合半参数核估计和自回归补偿的全球电离层总电子含量预报模型[J]. 地球物理学报, 2021, 64(9): 3021-3029.
Qiu Fengqin, Pan Xiong, Luo Xiaomin, et al. Global Ionospheric TEC Prediction Model Integrated with Semiparametric Kernel Estimation and Autoregressive Compensation[J]. Chinese Journal of Geophysics, 2021, 64(9): 3021-3029.
|
[11] |
Liu L, Zou S S, Yao Y B, et al. Forecasting Global Ionospheric TEC Using Deep Learning Approach[J]. Space Weather, 2020, 18(11): e2020SW002501.
|
[12] |
汤俊, 毛文飞. 多尺度ARMA残差修正模型震前电离层TEC异常探测[J]. 武汉大学学报(信息科学版), 2019, 44(6): 791-798.
Tang Jun, Mao Wenfei. Multi-Scale ARMA Residual Correction Model for Detecting Pre-earthquake Ionospheric Anomalies[J]. Geomatics and Information Science of Wuhan University, 2019, 44(6): 791-798.
|
[13] |
陆建华, 王斌, 胡伍生. 利用BP神经网络改进电离层短期预报模型[J]. 测绘科学技术学报, 2017, 34(1): 1-4.
Lu Jianhua, Wang Bin, Hu Wusheng. Improved Prediction Model of Ionospheric TEC by BP Neural Network[J]. Journal of Geomatics Science and Technology, 2017, 34(1): 1-4.
|
[14] |
Sivavaraprasad G, Deepika V S, Sreenivasarao D, et al. Performance Evaluation of Neural Network TEC Forecasting Models over Equatorial Low-Latitude Indian GNSS Station[J]. Geodesy and Geodynamics, 2020, 11(3): 192-201.
|
[15] |
鲁铁定, 黄佳伟, 贺小星, 等. EWT-Elman组合模型短期电离层TEC预报[J]. 大地测量与地球动力学, 2021, 41(7): 666-671.
Lu Tieding, Huang Jiawei, He Xiaoxing, et al. Short-Term Ionospheric TEC Prediction Using EWT-Elman Combination Model[J]. Journal of Geodesy and Geodynamics, 2021, 41(7): 666-671.
|
[16] |
黄佳伟, 鲁铁定, 贺小星, 等. Prophet-Elman残差改正电离层TEC短期预报模型[J]. 大地测量与地球动力学, 2021, 41(8): 783-788.
Huang Jiawei, Lu Tieding, He Xiaoxing, et al. Short Term Prediction Model of Ionospheric TEC Based on Residual Correction of Prophet-Elman[J]. Journal of Geodesy and Geodynamics, 2021, 41(8): 783-788.
|
[17] |
李涌涛, 李建文, 魏绒绒, 等. 全球电离层TEC格网时空变化特性分析[J]. 武汉大学学报(信息科学版), 2020, 45(5): 776-783.
Li Yongtao, Li Jianwen, Wei Rongrong, et al. Analysis of Temporal and Spatial Variation Characteristics of Global Ionospheric TEC Grid[J]. Geomatics and Information Science of Wuhan University, 2020, 45(5): 776-783.
|
[18] |
柳景斌, 王泽民, 章红平, 等. 几种地基GPS区域电离层TEC建模方法的比较及其一致性研究[J]. 武汉大学学报(信息科学版), 2008, 33(5): 479-483.
Liu Jingbin, Wang Zemin, Zhang Hongping, et al. Comparison and Consistency Research of Regional Ionospheric TEC Models Based on GPS Measurements[J]. Geomatics and Information Science of Wuhan University, 2008, 33(5): 479-483.
|
[19] |
薛军琛. 中国地区电离层延迟函数模型建立与精度估计[D]. 青岛: 山东科技大学, 2010.
Xue Junchen. Establishment and Accuracy Estimation of Ionospheric Delay Function Model in China Area[D].Qingdao: Shandong University of Science and Technology, 2010.
|
[20] |
史坤朋, 郭金运, 张永明, 等. 基于CMONOC GPS数据的SSA电离层预测模型研究[J]. 大地测量与地球动力学, 2019, 39(11): 1153-1158.
Shi Kunpeng, Guo Jinyun, Zhang Yongming, et al. Ionospheric Prediction of SSA Model Based on CMONOC GPS[J]. Journal of Geodesy and Geodynamics, 2019, 39(11): 1153-1158.
|
[21] |
Xu X, Wang X Z, Li K, et al. RETRACTED ARTICLE: Source Discrimination of Mine Water Inrush Based on Elman Neural Network Globally Optimized by Genetic Algorithm[J]. Arabian Journal of Geosciences, 2021, 14(13): 1204.
|
[22] |
朱其萍, 徐红玉, 王晓强, 等. 基于PSO-BP的超声滚挤压轴承套圈表面加工硬化程度预测[J]. 锻压技术, 2021, 46(11): 190-196.
Zhu Qiping, Xu Hongyu, Wang Xiaoqiang, et al. Prediction on Degree of Work Hardening for Surface of Bearing Ring by Ultrasonic Rolling Extrusion Based on PSO-BP[J]. Forging & Stamping Technology, 2021, 46(11): 190-196.
|
[23] |
Gonzalez W D, Joselyn J A, Kamide Y, et al. What Is a Geomagnetic Storm?[J]. Journal of Geophysical Research: Space Physics, 1994, 99(A4): 5771-5792.
|
[24] |
Loewe C A, Prölss G W. Classification and Mean Behavior of Magnetic Storms[J]. Journal of Geophysical Research: Space Physics, 1997, 102(A7): 14209-14213.
|
[25] |
Ke F Y,Wang J L, Tu M H,et al. Enhancing Relia‑bility of Seismo-Ionospheric Anomaly Detection with the Linear Correlation Between Total Electron Content and the Solar Activity Index F10.7: Nepal Earthquake 2015[J]. Journal of Geodynamics, 2018, 121: 88-95.
|
[1] | DU Yan, NING Lize, XIE Mowen, BAI Yunfei, LI Heng, JIA Beining. A Prediction Model of Landslide Displacement in Reservoir Area Considering Time Lag Effect[J]. Geomatics and Information Science of Wuhan University, 2024, 49(8): 1347-1355. DOI: 10.13203/j.whugis20220133 |
[2] | XIAO Ruya, HE Xiufeng. Deformation Monitoring of Reservoirs and Dams Using Time-Series InSAR[J]. Geomatics and Information Science of Wuhan University, 2019, 44(9): 1334-1341. DOI: 10.13203/j.whugis20170327 |
[3] | ZHANG Yan, LV Pinji, LIU Jia. Impact of the Yangtze River Three Gorges Reservoir on Fault Activity[J]. Geomatics and Information Science of Wuhan University, 2017, 42(10): 1497-1500. DOI: 10.13203/j.whugis20140983 |
[4] | HUANG Shengxiang, LUO Li. Stability Analysis and Results of the Landslide MonitoringDatum in the Three Gorges Reservoir Area[J]. Geomatics and Information Science of Wuhan University, 2014, 39(3): 367-372. DOI: 10.13203/j.whugis20120019 |
[5] | WU Xueling, REN Fu, NIU Ruiqing. Spatial Intelligent Prediction of Landslide Hazard Based on Multi-source Data in Three Gorges Reservoir Area[J]. Geomatics and Information Science of Wuhan University, 2013, 38(8): 963-968. |
[6] | HU Teng, DU Ruilin, ZHANG Zhenhua, WU Yue. Simulation and Mechanism Analysis on Crustal Vertically Deformation in Three Gorges Reservoir Area Under the Condition of Reservoir Impoundment[J]. Geomatics and Information Science of Wuhan University, 2010, 35(1): 33-36. |
[7] | WU Tao, YAN Huiwu, TANG Guigang. Prediction on Time Series Analysis of Water Quality in Yangtze Gorges Reservoir Area[J]. Geomatics and Information Science of Wuhan University, 2006, 31(6): 500-502. |
[8] | DU Ruilin, QIAO Xuejun, YANG Shaomin, WANG Qi. Results of the Crustal Deformation by GPS Survey and Horizontal Strain Rate Fields in the Three Gorges Area[J]. Geomatics and Information Science of Wuhan University, 2004, 29(9): 768-771. |
[9] | SHI Dong, CHEN Jun, ZHU Qing. Oil-Gas Reservoir Evaluation Based on GIS[J]. Geomatics and Information Science of Wuhan University, 2004, 29(7): 592-596. |
[10] | JIANG Fuzhen. Role of Gravimetry in Monitoring the Crustal Deformation of Three Gorges Reservoir Area[J]. Geomatics and Information Science of Wuhan University, 2003, 28(6): 679-682. |