LI Yongtao, ZHAO Ang, LI Jianwen, CHE Tongyu, PAN Lin, CHEN Chen. Regional Ionospheric TEC Modeling and Accuracy Analysis Based on Observations from a Station[J]. Geomatics and Information Science of Wuhan University, 2022, 47(1): 69-78. DOI: 10.13203/j.whugis20190286
Citation: LI Yongtao, ZHAO Ang, LI Jianwen, CHE Tongyu, PAN Lin, CHEN Chen. Regional Ionospheric TEC Modeling and Accuracy Analysis Based on Observations from a Station[J]. Geomatics and Information Science of Wuhan University, 2022, 47(1): 69-78. DOI: 10.13203/j.whugis20190286

Regional Ionospheric TEC Modeling and Accuracy Analysis Based on Observations from a Station

Funds: 

The National Natural Science Foundation of China 41904042

More Information
  • Author Bio:

    LI Yongtao, master, engineer, specializes in ionospheric TEC modeling and GNSS data analysis. E-mail: 641594920@qq.com

  • Corresponding author:

    LI Jianwen, PhD, professor. E-mail: ZZLJW@126.com

  • Received Date: October 23, 2020
  • Published Date: January 04, 2022
  •   Objectives  Establishing a regional ionospheric total electron content (TEC) model from a single station is much more efficient than developing a global multistation model because of its small amount of data. However, the single-station regional ionospheric TEC model has a scope of application. Therefore, the study of the scope and accuracy of a single-station regional ionospheric TEC model can effectively provide high-precision ionospheric delay correction for single-frequency users in the region.
      Methods  With 2-to 15-order spherical harmonic functions, single-station regional ionospheric TEC models are established using global navigation satellite systems (GNSS) observations from 16 stations in the European region during day of year (DOY) 357—363 in 2017, a period of calm solar activity and without a magnetic storm. The average ionospheric TEC values and average root mean square (RMS) values at all grid points in the longitude–latitude ranges of 0°×0°, 10°×5°, 10°×10°, 10°×15°, 20°×15°, and 20°×20° are compared with those of global ionospheric products such as Center for Orbit Determination in Europe (CODE), International GNSS Monitoring and Assessment System (iGMAS), and International GNSS Service (IGS) for the determination of the scope of application and accuracy of the single-station regional ionospheric TEC models.
      Results  (1) The 16 single-station regional ionospheric TEC models based on 2-to-15-order spherical harmonic functions have the average TEC values within the value range of CODE, iGMAS, and IGS in different regions. In other words, within the latitude-longitude range of 20°×20°, the TEC values of the single-station regional ionospheric models established by the proposed method are comparable to those of CODE, iGMAS, and IGS. (2) The RMS values of regional ionospheric TEC models established with the data of 16 single stations and 2-to-15-order spherical harmonic functions are different from those of IGS beyond the latitude-longitude range of 10°×10°. The lower order of spherical harmonic functions in the latitude‍-longitude range of 10°×10° corresponds to smaller RMS values of the models. The accuracy of the single-station regional ionospheric TEC models based on low-order (2×2 or 3×3) spherical harmonic functions is similar to that of IGS in the 10°×10° range centered on a single station, namely that the applicable radius of the single-station regional ionospheric TEC models is about 600 km and the accuracy is about 1 TECU. (3) The single-station regional ionospheric TEC models are highly consistent with the IGS global ionospheric TEC model, which indicates that the accuracy of the single-station regional ionospheric TEC models based on low-order (2×2 or 3×3) spherical harmonic functions is comparable to that of the IGS global ionospheric TEC model.
      Conclusions  The results show that the single-station regional ionospheric TEC models based on low-order (2×2 or 3×3) spherical harmonic functions has the comparable accuracy to that of global ionospheric products such as CODE, iGMAS, and IGS, which is about 1.0 TECU, within the latitude‐longitude range of 10°×10° (radius < 600 km) centered on a single station. Thus, the global ionospheric TEC model can be replaced by the ionospheric TEC model established with data of a single station in a certain region (radius less than 600 km), with which the high-precision ionospheric delay correction can be efficiently provided for single-frequency users in the region.
  • [1]
    毛文飞. 电离层TEC预测模型的研究及应用[D]. 抚州: 东华理工大学, 2018

    Mao Wenfei. Research and Application of Prediction Model of Total Electron Content in Ionosphere[D]. Fuzhou: East China University of Technology, 2018
    [2]
    王成, 毛大智, 施闯, 等. 全球电离层模型的分布式并行解算[J]. 武汉大学学报·信息科学版, 2018, 43(8): 1207-1213 doi: 10.13203/j.whugis20160274

    Wang Cheng, Mao Dazhi, Shi Chuang, et al. Distributed Parallel Estimation for Global Ionospheric Modeling[J]. Geomatics and Information Science of Wuhan University, 2018, 43(8): 1207-1213 doi: 10.13203/j.whugis20160274
    [3]
    薛军琛, 宋淑丽, 朱文耀. 基于BDS/GPS双系统的全球电离层建模[J]. 中国科学: 物理学力学天文学, 2015, 45(7): 28-37 https://www.cnki.com.cn/Article/CJFDTOTAL-JGXK201507005.htm

    Xue Junchen, Song Shuli, Zhu Wenyao. Global Ionosphere Model Based on BDS/GPS Dual-System Observations[J]. Scientia Sinica(Physica, Mechanica and Astronomica), 2015, 45(7): 28-37 https://www.cnki.com.cn/Article/CJFDTOTAL-JGXK201507005.htm
    [4]
    李征航, 黄劲松. GPS测量与数据处理[M]. 武汉: 武汉大学出版社, 2005

    Li Zhenghang, Huang Jinsong. GPS Surveying and Data Processing[M]. Wuhan: Wuhan University Press, 2005
    [5]
    袁运斌. 基于GPS的电离层监测及延迟改正理论与方法的研究[D]. 武汉: 中国科学院研究生院, 2002

    Yuan Yunbin. Study on Theories and Methods of Correcting Ionospheric Delay and Monitoring Ionosphere Based on GPS[D]. Wuhan: Graduate School of Chinese Academy of Sciences, 2002
    [6]
    刘磊, 姚宜斌, 孔建, 等. 附加GIM约束的全球电离层建模[J]. 大地测量与地球动力学, 2017, 37 (1): 67-71 https://www.cnki.com.cn/Article/CJFDTOTAL-DKXB201701015.htm

    Liu Lei, Yao Yibin, Kong Jian, et al. Global Ionosphere Modeling with GIM Constraint[J]. Journal of Geodesy and Geodynamics, 2017, 37(1): 67-71 https://www.cnki.com.cn/Article/CJFDTOTAL-DKXB201701015.htm
    [7]
    李子申, 王宁波, 李敏, 等. 国际GNSS服务组织全球电离层TEC格网精度评估与分析[J]. 地球物理学报, 2017, 60(10): 3718-3729 doi: 10.6038/cjg20171003

    Li Zishen, Wang Ningbo, Li Min, et al. Evaluation and Analysis of the Global Ionospheric TEC Map in the Frame of International GNSS Services[J]. Chinese Journal of Geophysics, 2017, 60(10): 3718-3729 doi: 10.6038/cjg20171003
    [8]
    袁运斌, 霍星亮, 张宝成. 近年来我国GNSS电离层延迟精确建模及修正研究进展[J]. 测绘学报, 2017, 46(10): 1364-1378 doi: 10.11947/j.AGCS.2017.20170349

    Yuan Yunbin, Huo Xingliang, Zhang Baocheng. Research Progress of Precise Models and Correction for GNSS Ionospheric Delay in China over Recent Years[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10): 1364-1378 doi: 10.11947/j.AGCS.2017.20170349
    [9]
    杨业, 谢益炳, 陆亚峰, 等. 基于陆态网数据低阶球谐函数电离层区域建模[J]. 测绘地理信息, 2015, 40 (3): 45-47

    Yang Ye, Xie Yibing, Lu Yafeng, et al. Modeling the Low-Order Spherical Harmonic Function Ionospheric Region Based on the Land State Network Data[J]. Journal of Geomatics, 2015, 40(3): 45-47
    [10]
    柳景斌, 王泽民, 王海军, 等. 利用球冠谐分析方法和GPS数据建立中国区域电离层TEC模型[J]. 武汉大学学报·信息科学版, 2008, 33(8): 792-795 http://ch.whu.edu.cn/article/id/1682

    Liu Jingbin, Wang Zemin, Wang Haijun, et al. Modeling Regional Ionosphere Using GPS Measurements over China by Spherical Cap Harmonic Analysis Methodology[J]. Geomatics and Information Science of Wuhan University, 2008, 33(8): 792-795 http://ch.whu.edu.cn/article/id/1682
    [11]
    阿尔察, 刘四清, 黄文耿, 等. 中国电离层TEC同化现报系统[J]. 地球物理学报, 2018, 61(6): 2186-2197 https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201806002.htm

    A Ercha, Liu Siqing, Huang Wengeng, et al. Ionospheric TEC Data Assimilation and Now-Casting System over China[J]. Chinese Journal of Geophysics, 2018, 61(6): 2186-2197 https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201806002.htm
    [12]
    付伟, 姚顽强, 陈鹏, 等. 基于多项式的区域电离层建模精度分析与验证[J]. 北京测绘, 2018, 32(10): 1219-1225 https://www.cnki.com.cn/Article/CJFDTOTAL-BJCH201810024.htm

    Fu Wei, Yao Wanqiang, Chen Peng, et al. Polynomial Based Accuracy Analysis and Validation of Regional Ionospheric Modeling[J]. Beijing Surveying and Mapping, 2018, 32(10): 1219-1225 https://www.cnki.com.cn/Article/CJFDTOTAL-BJCH201810024.htm
    [13]
    杨帆, 李宁. 区域电离层延迟模型研究[J]. 测绘与空间地理信息, 2018, 41(7): 15-18 doi: 10.3969/j.issn.1672-5867.2018.07.005

    Yang Fan, Li Ning. Study on Regional Ionospheric Delay Model[J]. Geomatics & Spatial Information Technology, 2018, 41(7): 15-18 doi: 10.3969/j.issn.1672-5867.2018.07.005
    [14]
    Farzaneh S, Forootan E. Reconstructing Regional Ionospheric Electron Density: A Combined Spherical Slepian Function and Empirical Orthogonal Function Approach[J]. Surveys in Geophysics, 2018, 39 (2): 289-309 doi: 10.1007/s10712-017-9446-y
    [15]
    周要宗, 匡翠林, 窦邵华. 高阶电离层延迟对中国区域双差定位影响研究[J]. 大地测量与地球动力学, 2019, 39(5): 506-510 https://www.cnki.com.cn/Article/CJFDTOTAL-DKXB201905013.htm

    Zhou Yaozong, Kuang Cuilin, Dou Shaohua. Analysing Higher-Order Ionospheric Effects on GNSS Double-Differenced Positioning in China Region[J]. Journal of Geodesy and Geodynamics, 2019, 39 (5): 506-510 https://www.cnki.com.cn/Article/CJFDTOTAL-DKXB201905013.htm
    [16]
    陆仲连. 球谐函数[M]. 广州: 解放军出版社, 1988

    Lu Zhonglian. Spherical Harmonic Function[M]. Guangzhou: Liberation Army Publishing House, 1988
    [17]
    王健, 党亚民, 王虎. 全球电离层延迟建模及精度分析[J]. 测绘工程, 2019, 28(2): 17-21 https://www.cnki.com.cn/Article/CJFDTOTAL-CHGC201902004.htm

    Wang Jian, Dang Yamin, Wang Hu. Modeling Global Ionospheric Delay and Its Accuracy Analysis[J]. Engineering of Surveying and Mapping, 2019, 28(2): 17-21 https://www.cnki.com.cn/Article/CJFDTOTAL-CHGC201902004.htm
    [18]
    畅鑫, 张伟. 实时区域电离层TEC建模与单频PPP实验[J]. 大地测量与地球动力学, 2013, 33(5): 39-43 https://www.cnki.com.cn/Article/CJFDTOTAL-DKXB201305009.htm

    Chang Xin, Zhang Wei. Real Time Regional Ionospheric TEC Modeling and Single-Frequency PPP Experiment[J]. Journal of Geodesy and Geodynamics, 2013, 33(5): 39-43 https://www.cnki.com.cn/Article/CJFDTOTAL-DKXB201305009.htm
    [19]
    International GNSS Service. IGS Products[EB/OL]. [2007-04-15]. http://www.igs.org/products
    [20]
    International GNSS Monitoring and Assessment System. iGMAS Products[EB/OL]. [2014-12-13]. http://www.igmas.org/Product/Cpdetail/detail/nav_id/4/cate_id/36.html
  • Related Articles

    [1]LI Pengcheng, XU Qing, XING Shuai, LIU Zhiqing, ZHANG Junjun. Weighted Curve Fitting Filtering Method Based on Full-Waveform LiDAR Data[J]. Geomatics and Information Science of Wuhan University, 2018, 43(3): 420-427. DOI: 10.13203/j.whugis20150377
    [2]MA Honglei, LIU Chenglong, SONG Tao, ZOU Bang, YANG Xuefeng. A New Fitting Method of Profile Circular Curve of Existing Railway[J]. Geomatics and Information Science of Wuhan University, 2016, 41(12): 1696-1700. DOI: 10.13203/j.whugis20140612
    [3]KANG Yifei, WANG Shugen, HAN Feifei, SUN Mingwei. Destriping Methods of CBERS-02C Satellite Image Based on Improved Moment Matching[J]. Geomatics and Information Science of Wuhan University, 2015, 40(12): 1582-1587. DOI: 10.13203/j.whugis20150717
    [4]Jin Shaohua, Xiao Fumin, Bian Gang, Wang Mo, Sun Winchuan. A Method for Extracting Seabed Feature Parameters Based on the Angular Response Curve of Multibeam Backscatter Strength[J]. Geomatics and Information Science of Wuhan University, 2014, 39(12): 1493-1498.
    [5]ZHANG Bingxian, WANG Mi, PAN Jun. Destriping Panchromatic Imagery Using Self-adaptive Moment Match[J]. Geomatics and Information Science of Wuhan University, 2012, 37(12): 1464-1467.
    [6]LEI Weigang, TONG Xiaohua, LIU Dajie. Data Process Methods of Line Feature Generalization Based on Curve Fit[J]. Geomatics and Information Science of Wuhan University, 2006, 31(10): 896-899.
    [7]GUI Renzhou, YANG Zijie. Application of Time-Frequency Analysis Method Based on Signal Decomposition on Target Detection of High Frequency Surface Wave Radar[J]. Geomatics and Information Science of Wuhan University, 2006, 31(7): 653-656.
    [8]ZHANG Mengjun, SHU Hong, LIU Yan, WANG Tao. An Adaptive Thresholding Approach Based on Spatial Curved Surface Fitting[J]. Geomatics and Information Science of Wuhan University, 2006, 31(5): 395-398.
    [9]WANG Xinzhou, TANG Zhong'an, CHEN Zhihui. εm-Band Based on Spline Fitting Function of Anomalous Curves in GIS[J]. Geomatics and Information Science of Wuhan University, 2004, 29(1): 58-62.
    [10]Liu Wenbao, Huang Youcai, Li Zonghua. On Measuring Complexity of Digital Curves and Separating Stochastic Part from Trend Movement of Digitizing Process[J]. Geomatics and Information Science of Wuhan University, 1995, 20(4): 289-295.

Catalog

    Article views PDF downloads Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return