LIU Tao, XU Aigong, SUI Xin, WANG Changqiang. An Improved Robust Kalman Filtering Method Based on Innovation and Its Application in UWB Indoor Navigation[J]. Geomatics and Information Science of Wuhan University, 2019, 44(2): 233-239. DOI: 10.13203/j.whugis20170067
Citation: LIU Tao, XU Aigong, SUI Xin, WANG Changqiang. An Improved Robust Kalman Filtering Method Based on Innovation and Its Application in UWB Indoor Navigation[J]. Geomatics and Information Science of Wuhan University, 2019, 44(2): 233-239. DOI: 10.13203/j.whugis20170067

An Improved Robust Kalman Filtering Method Based on Innovation and Its Application in UWB Indoor Navigation

Funds: 

The National Key Research and Development Program of China 2016YFC0803102

Program for Colleges and Universities Innovative Research Team of Liaoning Province LT2015013

More Information
  • Author Bio:

    LIU Tao, master, specializes in indoor navigation and positioning by UWB and UWB/INS coupled method. E-mail: 851273623@qq.com

  • Corresponding author:

    XU Aigoing, PhD, professor. E-mail:xu_ag@126.com

  • Received Date: September 03, 2017
  • Published Date: February 04, 2019
  • In UWB indoor navigation, the accuracy of navigation resolution is greatly affected by non line of sight(NLOS) ranging error, and low filtering precision is influenced by uncertain system noise. To solve these problems, an improved robust Kalman filtering based on innovation is proposed and applied in ultra wideband(UWB) indoor navigation. On the foundation of the linear UWB indoor navigation model, the new method uses single innovation values to construct the matrix with robust factors and eliminate the influence of NLOS ranging error. Meanwhile, the new method does real-time estimation and corrects the system noise covariance matrix. Experimental result verifies the effectiveness of the new method. It is shown that the new method can not only effectively eliminate the influence of NLOS ranging error on navigation resolution, but also can further improve the filter precision and reliability in indoor navigation.
  • [1]
    田辉, 夏林元, 莫志明, 等.泛在无线信号辅助的室内外无缝定位方法与关键技术[J].武汉大学学报·信息科学版, 2009, 34(11):1372-1376 http://ch.whu.edu.cn/CN/abstract/abstract1430.shtml

    Tian Hui, Xia Linyuan, Esmond MOK, et al. Signals of Opportunity Assisted Ubiquitous Positioning and Its Key Elements for Outdoor/Indoor Environment[J]. Geomatics and Information Science of Wuhan University, 2009, 34(11):1372-1376 http://ch.whu.edu.cn/CN/abstract/abstract1430.shtml
    [2]
    Liu Hui, Darabi H S, Banerjee P, et al. Survey of Wireless Indoor Positioning Techniques and Systems[J]. IEEE Transaction on System, Man, and Cybernetics-Part C:Applications and Reviews, 2007, 37(6):1067-1080 doi: 10.1109/TSMCC.2007.905750
    [3]
    Alarifi A, Al-Salman A M, Alsaleh M, et al. Ultra Wideband Indoor Positioning Technologies Analysis and Recent Advances[J]. Sensors, 2016, 16(5):1-36 doi: 10.1109/JSEN.2015.2509619
    [4]
    De Angelis G, Moschitta A, Carbone P. Positioning Techniques in Indoor Environments Based on Stochastic Modeling of UWB Round-Trip-Time Measurements[J]. IEEE Transactions on Intelligent Transportation Systems, 2016, 17(8):2272-2281 doi: 10.1109/TITS.2016.2516822
    [5]
    Schroeder J, Galler S, Kyamakya K, et al. NLOS Detection Algorithms for Ultra-Wideband Localization[C]. Workshop on Positioning, Navigation and Communication, Hannover, Germany, 2007
    [6]
    Maran S, Gifford W M, H Wymeersch H, et al. NLOS Identification and Mitigation for Localization Based on UWB Experimental Data[J]. IEEE Journal on Selected Areas in Communications, 2011, 28(7):1026-1035 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=917983b16f42b32e4ac2b9c1c770db5d
    [7]
    Wymeersch H, Maranò S, Gifford W M, et al. A Machine Learning Approach to Ranging Error Mitigation for UWB Localization[J]. IEEE Transactions on Communications, 2012, 60(6):1719-1728 doi: 10.1109/TCOMM.2012.042712.110035
    [8]
    崔玮, 吴成东, 张云洲, 等.基于高斯混合模型的非视距定位算法[J].通信学, 2014, 35(1):99-106 doi: 10.3969/j.issn.1000-436x.2014.01.012

    Cui Wei, Wu Chengdong, Zhang Yunzhou, et al. GMM-based Localization Algorithm Under NLOS Conditions[J]. Journal of Communications, 2014, 35(1):99-106 doi: 10.3969/j.issn.1000-436x.2014.01.012
    [9]
    李奇越, 吴忠, 黎洁, 等.基于改进卡尔曼滤波的NLOS误差消除算法[J].电子测量与仪器学报, 2015, 29(10):1513-1519 http://d.old.wanfangdata.com.cn/Periodical/dzclyyqxb201510014

    Li Qiyue, Wu Zhong, Li Jie, et al. NLOS Error Elimination Algorithm Based on Modified Kalman Filtering[J]. Journal of Electronic Measurement and Instrumentation, 2015, 29(10):1513-1519 http://d.old.wanfangdata.com.cn/Periodical/dzclyyqxb201510014
    [10]
    毛科技, 邬锦彬, 金洪波, 等.面向非视距环境的室内定位算法[J].电子学报, 2016, 44(5):1174-1179 doi: 10.3969/j.issn.0372-2112.2016.05.023

    Mao Keji, Wu Jinbin, Jin Hongbo, et al. Indoor Localization Algorithm for NLOS Environment[J]. Acta Electronic Sinica, 2016, 44(5):1174-1179 doi: 10.3969/j.issn.0372-2112.2016.05.023
    [11]
    Yang Y, He H, Xu G. Adaptively Robust Filtering for Kinematic Geodetic Positioning[J]. Journal of Geodesy, 2001, 75(2):109-116 doi: 10.1007-s001900000157/
    [12]
    杨元喜, 任夏, 许艳.自适应抗差滤波理论及应用的主要进展[J].导航定位学报, 2013, 1(1):9-15 doi: 10.3969/j.issn.2095-4999.2013.01.003

    Yang Yuanxi, Ren Xia, Xu Yan. Main Progress of Adaptively Robust Filter with Applications in Navigation[J]. Journal of Navigation and Positioning, 2013, 1(1):9-16 doi: 10.3969/j.issn.2095-4999.2013.01.003
    [13]
    高为广, 陈谷仓.结合自适应滤波和神经网络的GNSS/INS抗差组合导航算法[J].武汉大学学报·信息科学版, 2014, 39(11):1323-1328 http://ch.whu.edu.cn/CN/abstract/abstract3118.shtml

    Gao Weiguang, Chen Gucang. Integrated GNSS/INS Navigation Algorithms Combining Adaptive Filter with Neural Network[J].Geomatics and Information Science of Wuhan University, 2014, 39(11):1323-1328 http://ch.whu.edu.cn/CN/abstract/abstract3118.shtml
    [14]
    谭兴龙, 王坚, 韩厚增.支持向量回归辅助的GPS/INS组合导航抗差自适应算法[J].测绘学报, 2014, 43(6):590-597

    Tan Xinglong, Wang Jian, Han Houzeng. SVR Aided Adaptive Robust Filtering Algorithm for GPS/INS Integrated Navigation[J].Acta Geodaetica et Cartographica Sinica, 2014, 43(6):590-597
    [15]
    苗岳旺, 周巍, 田亮, 等.基于新息χ2检测的扩展抗差卡尔曼滤波及其应用[J].武汉大学学报·信息科学版, 2016, 41(2):269-273 http://ch.whu.edu.cn/CN/abstract/abstract3466.shtml

    Miao Yuewang, Zhou Wei, Tian Liang, et al. Extended Robust Kalman Filter Based on Innovation Chi-Square Test Algorithm and Its Application[J]. Geomatics and Information Science of Wuhan University, 2016, 41(2):269-273 http://ch.whu.edu.cn/CN/abstract/abstract3466.shtml
    [16]
    魏伟, 秦永元, 张晓东, 等.对Sage-Husa算法的改进[J].中国惯性技术学报, 2012, 20(6):678-686 doi: 10.3969/j.issn.1005-6734.2012.06.013

    Wei Wei, Qin Yongyuan, Zhang Xiaodong, et al. Amelioration of the Sage-Husa Algorithm[J]. Journal of Chinese Inertial Technology, 2012, 20(6):678-686 doi: 10.3969/j.issn.1005-6734.2012.06.013
    [17]
    杨元喜.自适应动态导航定位[M].北京:测绘出版社, 2006

    Yang Yuanxi. Adaptive Navigation and Kinematic Positioning[M]. Beijing:Surveying and Mapping Press, 2006
  • Related Articles

    [1]LI Qingzhu, LI Zhining, ZHANG Yingtang, FAN Hongbo, YIN Gang. Integrated Vector Calibration of Magnetic Gradient Tensor System Using Nonlinear Method[J]. Geomatics and Information Science of Wuhan University, 2019, 44(5): 714-722, 730. DOI: 10.13203/j.whugis20170161
    [2]LIU Bin, GUO Jiming, SHI Junbo, WU Dijun. A GPS Height Fitting Method Based on the EGM2008 Model and Terrain Correction[J]. Geomatics and Information Science of Wuhan University, 2016, 41(4): 554-558. DOI: 10.13203/j.whugis20160249
    [3]ZHAN Yinhu, ZHENG Yong, ZHANG Chao, ZHANG Zhongkai, LI Zhuyang, MA Gaofeng. Spherical Circle Fitting Algorithm and Its Application on Azimuth Determination by Observing the Moon[J]. Geomatics and Information Science of Wuhan University, 2015, 40(11): 1514-1519. DOI: 10.13203/j.whugis20130562
    [4]WEI Erhu, LI Zhiqiang, GONG Guangyu, ZHANG Shuai. Fitting and Prediction of Pole Motion Time Series Model[J]. Geomatics and Information Science of Wuhan University, 2013, 38(12): 1420-1424.
    [5]SHU Chanfang, LI Fei, HAO Weifeng. Geoid/Quasigeoid Fitting Based on Equivalent Point Masses[J]. Geomatics and Information Science of Wuhan University, 2011, 36(2): 231-234.
    [6]ZENG Qihong, MAO Jianhua, LI Xianhua, LIU Xuefeng. Planar-Fitting Filtering Algorithm for LIDAR Points Cloud[J]. Geomatics and Information Science of Wuhan University, 2008, 33(1): 25-28.
    [7]WANG Jiexian. A Method for Fitting of Conicoid in Industrial Measurement[J]. Geomatics and Information Science of Wuhan University, 2007, 32(1): 47-50.
    [8]ZHANG Mengjun, SHU Hong, LIU Yan, WANG Tao. An Adaptive Thresholding Approach Based on Spatial Curved Surface Fitting[J]. Geomatics and Information Science of Wuhan University, 2006, 31(5): 395-398.
    [9]ZHOU Yunyao, CAI Yaxian. Correlation Processing Techniques in Frequency-domain Calibration for Very Broadband Seismometer—Raising Sinewave Calibration Precision Under Strong Noise by Using Vertical Correlation Method[J]. Geomatics and Information Science of Wuhan University, 2005, 30(7): 632-635.
    [10]GAO Wei, XU Shaoquan. Subregional Fitting and Transforming GPS Height into Normal Height[J]. Geomatics and Information Science of Wuhan University, 2004, 29(10): 908-911.
  • Cited by

    Periodical cited type(4)

    1. 梁志国,梁家奕. 正弦参数拟合误差量子化阶梯分布机理分析. 计量学报. 2024(10): 1555-1561 .
    2. 宁一鹏,毕京学,姚国标,桑文刚,郭秋英. 简化磁力计非线性误差模型的快速校正算法. 测绘科学. 2021(01): 36-41+55 .
    3. 于向前,刘斯,肖池阶,曲亚楠,宗秋刚,陈鸿飞,邹鸿,施伟红,王永福,陈傲,宋思宇,高爽,邵思霈. 基于椭球拟合的三轴磁强计两步校准法. 仪表技术与传感器. 2021(04): 52-56 .
    4. 张莺莺,张晓明,高丽珍,薛羽阳,刘俊. 弹载磁测系统等效安装误差的在线标定与补偿. 计算机测量与控制. 2021(08): 158-162 .

    Other cited types(5)

Catalog

    Article views PDF downloads Cited by(9)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return