LI Qingzhu, LI Zhining, ZHANG Yingtang, FAN Hongbo, YIN Gang. Integrated Vector Calibration of Magnetic Gradient Tensor System Using Nonlinear Method[J]. Geomatics and Information Science of Wuhan University, 2019, 44(5): 714-722, 730. DOI: 10.13203/j.whugis20170161
Citation: LI Qingzhu, LI Zhining, ZHANG Yingtang, FAN Hongbo, YIN Gang. Integrated Vector Calibration of Magnetic Gradient Tensor System Using Nonlinear Method[J]. Geomatics and Information Science of Wuhan University, 2019, 44(5): 714-722, 730. DOI: 10.13203/j.whugis20170161

Integrated Vector Calibration of Magnetic Gradient Tensor System Using Nonlinear Method

More Information
  • Author Bio:

    LI Qingzhu, master, specializes in magnetic anomaly detection. E-mail: laznlqz666@163.com

  • Corresponding author:

    LI Zhining, PhD, associate professor. E-mail: lizn03@hotmail.com

  • Received Date: March 13, 2018
  • Published Date: May 04, 2019
  • In order to obtain the accurate output of the tensor measurement, an integrated mathematical model of sensor biases, scale factors and non-orthogonality error of single magnetic sensor and the misalignment error between multi-sensor axes is established. Based on the cross magnetic gradient tensor system, a least-squares nonlinear integrated calibration method is proposed. Compared with the twostep scalar calibration, the integrated mathematical model can be used to estimate the entire 48 error parameters of the cross tensor system at once, and a low-cost vector calibration is realized using an man-made platform out-put as the reference, which greatly improves the calibration efficiency and accuracy of parameters estimated. Simulation and experiment results show that the accuracy of the error parameters' estimation of the tensor system is higher than 99.75%, the root mean square error of the total field intensity output is less than 2 nT and the root mean square error of the tensor component is less than 50 nT/m.
  • [1]
    张昌达.航空磁力梯度张量测量:航空磁测技术的最新进展[J].工程地球物理学报, 2006, 3(5):354-361 doi: 10.3969/j.issn.1672-7940.2006.05.005

    Zhang Changda.Airborne Tensor Magnetic Gradiometry:The Latest Progess of Airborne Magnetometric Technology[J].Chinese Journal of Engineering Geophysics, 2006, 3(5):354-361 doi: 10.3969/j.issn.1672-7940.2006.05.005
    [2]
    Schmidt P W, Clark D A.The Magnetic Gradient Tensor:Its Properties and Uses in Source Characterization[J].The Leading Edge, 2006, 25(1):75-78 http://cn.bing.com/academic/profile?id=4955d1fdf13120dedac987821d4ca914&encoded=0&v=paper_preview&mkt=zh-cn
    [3]
    Yin G, Zhang Y, Fan H, et al.Automatic Detection of Multiple UXO-like Targets Using Magnetic Anomaly Inversion and Self-adaptive Fuzzy C-means Clustering[J].Exploration Geophysics, 2015, 48(1):67-75 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e5689f9f9b39a17f9604880ef8ec2551
    [4]
    Yin G, Zhang Y, Fan H, et al.Detection, Localization and Classification of Multiple Dipole-Like Magnetic Sources Using Magnetic Gradient Tensor Data[J].Journal of Applied Geophysics, 2016, 128:131-139 doi: 10.1016/j.jappgeo.2016.03.022
    [5]
    刘丽敏.磁通门张量的结构设计、误差分析及水下目标探测[D].长春: 吉林大学, 2012

    Liu Limin.Configuration Design, Error Analysis and Underwater Target Detection of Fluxgate Tensor Magnetometer[D].Changchun: Jilin University, 2012
    [6]
    庞鸿锋.捷联式地磁矢量测量系统误差分析及校正补偿技术[D].长沙: 国防科学技术大学, 2015

    Pang Hongfeng.Error Analysis and Calibration/Com-pensation Method of Strap-Down Geomagnetic Vector Measurement System[D].Changsha: National University of Defense Technology, 2015
    [7]
    Zikmund A, Janosek M, Ulvr M, et al.Precise Calibration Method for Triaxial Magnetometers Not Requiring Earth's Field Compensation[J].IEEE Transactions on Instrumentation and Measurement, 2015, 64(5):1242-1247 doi: 10.1109/TIM.2015.2395531
    [8]
    Merayo J M G, Brauer P, Primdahl F, et al.Scalar Calibration of Vector Magnetometers[J].Measurement Science and Technology, 2000, 11(2):120-132 doi: 10.1088/0957-0233/11/2/304
    [9]
    Yin G, Zhang Y, Fan H, et al.Linear Calibration Method of Magnetic Gradient Tensor System[J].Measurement, 2014, 56:8-18 doi: 10.1016/j.measurement.2014.06.017
    [10]
    Pang H, Pan M, Wan C, et al.Integrated Compensation of Magnetometer Array Magnetic Distortion Field and Improvement of Magnetic Object Localization[J].IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(9):5670-5676 doi: 10.1109/TGRS.2013.2291839
    [11]
    于振涛, 吕俊伟, 郭宁, 等.四面体磁梯度张量系统的误差补偿[J].光学精密工程, 2014, 22(10):2683-2690 http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201410016

    Yu Zhentao, Lü Junwei, Guo Ning, et al.Error Compensation of Tetrahedron Magnetic Gradiometer[J].Optics and Precision Engineering, 2014, 22(10):2683-2690 http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201410016
    [12]
    Liu Z, Pang H, Pan M, et al.Calibration and Compensation of Geomagnetic Vector Measurement System and Improvement of Magnetic Anomaly Detection[J].IEEE Geoscience and Remote Sensing Letters, 2016, 13(3):447-451 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=30af5c05367513e015a8b455c0dbed3e
    [13]
    石岗, 李希胜, 李雪峰, 等.航向测量系统中三轴磁传感器标定的等效两步法[J].仪器仪表学报, 2017, 38(2):402-407 http://d.old.wanfangdata.com.cn/Periodical/yqyb201702018

    Shi Gang, Li Xisheng, Li Xuefeng, et al.Equivalent Two-Step Algorithm for the Calibration of Three-Axis Magnetic Sensor in Heading Measurement System[J].Chinese Journal of Scientific Instrument, 2017, 38(2):402-407 http://d.old.wanfangdata.com.cn/Periodical/yqyb201702018
    [14]
    张光, 张英堂, 尹刚, 等.基于线性误差模型的磁张量系统校正[J].吉林大学学报(工学版), 2015, 45(3):1012-1016 http://d.old.wanfangdata.com.cn/Periodical/jlgydxzrkxxb201503048

    Zhang Guang, Zhang Yingtang, Yin Gang, et al.Calibration Method of Magnetic Tensor System Based on Linear Error Model[J].Journal of Jilin University (Engineering and Technology Edition), 2015, 45(3):1012-1016 http://d.old.wanfangdata.com.cn/Periodical/jlgydxzrkxxb201503048
    [15]
    Pang H, Luo S, Zhang Q, et al.Calibration of a Fluxgate Magnetometer Array and Its Application in Magnetic Object Localization[J].Measurement Science and Technology, 2013, DOI: 10.1088/0957-0233/24/7/075102
    [16]
    Pang H, Chen D, Pan M, et al.Nonlinear Temperature Compensation of Fluxgate Magnetometers with a Least-Squares Support Vector Machine[J].Measurement Science and Technology, 2012, 23(2):1-6 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c26f8584dd65682b508b9ae2dc141701
    [17]
    Moré J J.The Levenberg-Marquardt Algorithm:Implementation and Theory[J].Lecture Notes in Mathematics, 1978, 630:105-116 http://d.old.wanfangdata.com.cn/OAPaper/oai_arXiv.org_1307.3121
    [18]
    Pang H, Chen D, Pan M, et al.Improvement of Magnetometer Calibration Using Levenberg-Marquardt Algorithm[J].IEEE Transactions on Electrical and Electronic Engineering, 2014, 9(3):324-328 doi: 10.1002/tee.2014.9.issue-3
    [19]
    Madsen K, Nielsen H B, Tingleff O.Methods for Non-linear Least Squares Problems[R].Technical University of Denmark, Denmark, 2004
    [20]
    Beck A.Introduction to Nonlinear Optimization:Theory, Algorithms, and Applications with Matlab[M].Philadelphia:Society for Industrial and Applied Mathematics, 2014
  • Cited by

    Periodical cited type(3)

    1. 李青竹,李晶,李志宁,石志勇,文雪忠. 磁梯度张量系统目标探测技术研究进展. 兵工学报. 2024(12): 4205-4230 .
    2. 荆志伟,裴东兴,雒茁君. 基于磁梯度张量不变量的系统非对准误差校正. 国外电子测量技术. 2022(05): 155-158 .
    3. 屈文斌. 基于单片机的磁通门传感器非正交性校正研究. 自动化与仪表. 2020(04): 62-65+69 .

    Other cited types(5)

Catalog

    Article views (2469) PDF downloads (98) Cited by(8)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return