LI Qingzhu, LI Zhining, ZHANG Yingtang, FAN Hongbo, YIN Gang. Integrated Vector Calibration of Magnetic Gradient Tensor System Using Nonlinear Method[J]. Geomatics and Information Science of Wuhan University, 2019, 44(5): 714-722, 730. DOI: 10.13203/j.whugis20170161
Citation: LI Qingzhu, LI Zhining, ZHANG Yingtang, FAN Hongbo, YIN Gang. Integrated Vector Calibration of Magnetic Gradient Tensor System Using Nonlinear Method[J]. Geomatics and Information Science of Wuhan University, 2019, 44(5): 714-722, 730. DOI: 10.13203/j.whugis20170161

Integrated Vector Calibration of Magnetic Gradient Tensor System Using Nonlinear Method

More Information
  • Author Bio:

    LI Qingzhu, master, specializes in magnetic anomaly detection. E-mail: laznlqz666@163.com

  • Corresponding author:

    LI Zhining, PhD, associate professor. E-mail: lizn03@hotmail.com

  • Received Date: March 13, 2018
  • Published Date: May 04, 2019
  • In order to obtain the accurate output of the tensor measurement, an integrated mathematical model of sensor biases, scale factors and non-orthogonality error of single magnetic sensor and the misalignment error between multi-sensor axes is established. Based on the cross magnetic gradient tensor system, a least-squares nonlinear integrated calibration method is proposed. Compared with the twostep scalar calibration, the integrated mathematical model can be used to estimate the entire 48 error parameters of the cross tensor system at once, and a low-cost vector calibration is realized using an man-made platform out-put as the reference, which greatly improves the calibration efficiency and accuracy of parameters estimated. Simulation and experiment results show that the accuracy of the error parameters' estimation of the tensor system is higher than 99.75%, the root mean square error of the total field intensity output is less than 2 nT and the root mean square error of the tensor component is less than 50 nT/m.
  • [1]
    张昌达.航空磁力梯度张量测量:航空磁测技术的最新进展[J].工程地球物理学报, 2006, 3(5):354-361 doi: 10.3969/j.issn.1672-7940.2006.05.005

    Zhang Changda.Airborne Tensor Magnetic Gradiometry:The Latest Progess of Airborne Magnetometric Technology[J].Chinese Journal of Engineering Geophysics, 2006, 3(5):354-361 doi: 10.3969/j.issn.1672-7940.2006.05.005
    [2]
    Schmidt P W, Clark D A.The Magnetic Gradient Tensor:Its Properties and Uses in Source Characterization[J].The Leading Edge, 2006, 25(1):75-78 http://cn.bing.com/academic/profile?id=4955d1fdf13120dedac987821d4ca914&encoded=0&v=paper_preview&mkt=zh-cn
    [3]
    Yin G, Zhang Y, Fan H, et al.Automatic Detection of Multiple UXO-like Targets Using Magnetic Anomaly Inversion and Self-adaptive Fuzzy C-means Clustering[J].Exploration Geophysics, 2015, 48(1):67-75 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e5689f9f9b39a17f9604880ef8ec2551
    [4]
    Yin G, Zhang Y, Fan H, et al.Detection, Localization and Classification of Multiple Dipole-Like Magnetic Sources Using Magnetic Gradient Tensor Data[J].Journal of Applied Geophysics, 2016, 128:131-139 doi: 10.1016/j.jappgeo.2016.03.022
    [5]
    刘丽敏.磁通门张量的结构设计、误差分析及水下目标探测[D].长春: 吉林大学, 2012

    Liu Limin.Configuration Design, Error Analysis and Underwater Target Detection of Fluxgate Tensor Magnetometer[D].Changchun: Jilin University, 2012
    [6]
    庞鸿锋.捷联式地磁矢量测量系统误差分析及校正补偿技术[D].长沙: 国防科学技术大学, 2015

    Pang Hongfeng.Error Analysis and Calibration/Com-pensation Method of Strap-Down Geomagnetic Vector Measurement System[D].Changsha: National University of Defense Technology, 2015
    [7]
    Zikmund A, Janosek M, Ulvr M, et al.Precise Calibration Method for Triaxial Magnetometers Not Requiring Earth's Field Compensation[J].IEEE Transactions on Instrumentation and Measurement, 2015, 64(5):1242-1247 doi: 10.1109/TIM.2015.2395531
    [8]
    Merayo J M G, Brauer P, Primdahl F, et al.Scalar Calibration of Vector Magnetometers[J].Measurement Science and Technology, 2000, 11(2):120-132 doi: 10.1088/0957-0233/11/2/304
    [9]
    Yin G, Zhang Y, Fan H, et al.Linear Calibration Method of Magnetic Gradient Tensor System[J].Measurement, 2014, 56:8-18 doi: 10.1016/j.measurement.2014.06.017
    [10]
    Pang H, Pan M, Wan C, et al.Integrated Compensation of Magnetometer Array Magnetic Distortion Field and Improvement of Magnetic Object Localization[J].IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(9):5670-5676 doi: 10.1109/TGRS.2013.2291839
    [11]
    于振涛, 吕俊伟, 郭宁, 等.四面体磁梯度张量系统的误差补偿[J].光学精密工程, 2014, 22(10):2683-2690 http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201410016

    Yu Zhentao, Lü Junwei, Guo Ning, et al.Error Compensation of Tetrahedron Magnetic Gradiometer[J].Optics and Precision Engineering, 2014, 22(10):2683-2690 http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201410016
    [12]
    Liu Z, Pang H, Pan M, et al.Calibration and Compensation of Geomagnetic Vector Measurement System and Improvement of Magnetic Anomaly Detection[J].IEEE Geoscience and Remote Sensing Letters, 2016, 13(3):447-451 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=30af5c05367513e015a8b455c0dbed3e
    [13]
    石岗, 李希胜, 李雪峰, 等.航向测量系统中三轴磁传感器标定的等效两步法[J].仪器仪表学报, 2017, 38(2):402-407 http://d.old.wanfangdata.com.cn/Periodical/yqyb201702018

    Shi Gang, Li Xisheng, Li Xuefeng, et al.Equivalent Two-Step Algorithm for the Calibration of Three-Axis Magnetic Sensor in Heading Measurement System[J].Chinese Journal of Scientific Instrument, 2017, 38(2):402-407 http://d.old.wanfangdata.com.cn/Periodical/yqyb201702018
    [14]
    张光, 张英堂, 尹刚, 等.基于线性误差模型的磁张量系统校正[J].吉林大学学报(工学版), 2015, 45(3):1012-1016 http://d.old.wanfangdata.com.cn/Periodical/jlgydxzrkxxb201503048

    Zhang Guang, Zhang Yingtang, Yin Gang, et al.Calibration Method of Magnetic Tensor System Based on Linear Error Model[J].Journal of Jilin University (Engineering and Technology Edition), 2015, 45(3):1012-1016 http://d.old.wanfangdata.com.cn/Periodical/jlgydxzrkxxb201503048
    [15]
    Pang H, Luo S, Zhang Q, et al.Calibration of a Fluxgate Magnetometer Array and Its Application in Magnetic Object Localization[J].Measurement Science and Technology, 2013, DOI: 10.1088/0957-0233/24/7/075102
    [16]
    Pang H, Chen D, Pan M, et al.Nonlinear Temperature Compensation of Fluxgate Magnetometers with a Least-Squares Support Vector Machine[J].Measurement Science and Technology, 2012, 23(2):1-6 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c26f8584dd65682b508b9ae2dc141701
    [17]
    Moré J J.The Levenberg-Marquardt Algorithm:Implementation and Theory[J].Lecture Notes in Mathematics, 1978, 630:105-116 http://d.old.wanfangdata.com.cn/OAPaper/oai_arXiv.org_1307.3121
    [18]
    Pang H, Chen D, Pan M, et al.Improvement of Magnetometer Calibration Using Levenberg-Marquardt Algorithm[J].IEEE Transactions on Electrical and Electronic Engineering, 2014, 9(3):324-328 doi: 10.1002/tee.2014.9.issue-3
    [19]
    Madsen K, Nielsen H B, Tingleff O.Methods for Non-linear Least Squares Problems[R].Technical University of Denmark, Denmark, 2004
    [20]
    Beck A.Introduction to Nonlinear Optimization:Theory, Algorithms, and Applications with Matlab[M].Philadelphia:Society for Industrial and Applied Mathematics, 2014
  • Related Articles

    [1]WU Jiaqi, JIANG Yonghua, SHEN Xin, LI Beibei, PAN Shenlin. Satellite Video Motion Detection Supported by Decision Tree Weak Classification[J]. Geomatics and Information Science of Wuhan University, 2019, 44(8): 1182-1190. DOI: 10.13203/j.whugis20180094
    [2]FU Zisheng, LI Qiuping, LIU Lin, ZHOU Suhong. Identification of Urban Network Congested Segments Using GPS Trajectories Double-Clustering Method[J]. Geomatics and Information Science of Wuhan University, 2017, 42(9): 1264-1270. DOI: 10.13203/j.whugis20150036
    [3]DENG Min, CHEN Ti, YANG Wentao. A New Method of Modeling Spatio-temporal Sequence by Considering Spatial Scale Characteristics[J]. Geomatics and Information Science of Wuhan University, 2015, 40(12): 1625-1632. DOI: 10.13203/j.whugis20130842
    [4]FU Zhongliang, LIU Siyuan. MR-tree with Voronoi Diagrams for Parallel Spatial Queries[J]. Geomatics and Information Science of Wuhan University, 2012, 37(12): 1490-1494.
    [5]HE Chu, LIU Ming, XU Lianyu, LIU Longzhu. A Hierarchical Classification Method Based on Feature Selection and Adaptive Decision Tree for SAR Image[J]. Geomatics and Information Science of Wuhan University, 2012, 37(1): 46-49.
    [6]ZHANG Lu, GAO Zhihong, LIAO Mingsheng, LI Xinyan. Estimating Urban Impervious Surface Percentage with Multi-source Remote Sensing Data[J]. Geomatics and Information Science of Wuhan University, 2010, 35(10): 1212-1216.
    [7]HAN Tao, XU Xiaotao, XIE Yaowen. Automated Construction and Classification of Decision Tree Classifier Based on Single-Temporal MODIS Data[J]. Geomatics and Information Science of Wuhan University, 2009, 34(2): 191-194.
    [8]LIAO Mingsheng, JIANG Liming, LIN Hui, YANG Limin. Estimating Urban Impervious Surface Percent Using Boosting as a Refinement of CART Analysis[J]. Geomatics and Information Science of Wuhan University, 2007, 32(12): 1099-1102.
    [9]YU Xin, ZHENG Zhaobao, YE Zhiwei, TIAN Liqiao. Texture Classification Based on Tree Augmented Naive Bayes Classifier[J]. Geomatics and Information Science of Wuhan University, 2007, 32(4): 287-289.
    [10]GUO Jing, LIU Guangjun, DONG Xurong, GUO Lei. 2-Level R-tree Spatial Index Based on Spatial Grids and Hilbert R-tree[J]. Geomatics and Information Science of Wuhan University, 2005, 30(12): 1084-1088.
  • Cited by

    Periodical cited type(13)

    1. 陈月,王磊,池深深,王羽,戚鑫鑫,朱尚军. 基于SBAS-InSAR和CNN-GRU模型的采动村庄地表沉降监测预计. 金属矿山. 2025(02): 138-144 .
    2. 何毅,姚圣,陈毅,闫浩文,张立峰. ConvLSTM神经网络的时序InSAR地面沉降时空预测. 武汉大学学报(信息科学版). 2025(03): 483-496 .
    3. 倪尔瑞,张建新,邱明剑,权力奥,朱晓峻. 基于SBAS-InSAR技术的淮北市地表沉降监测分析. 北京测绘. 2024(03): 312-317 .
    4. 吴启琛,于瑞鹏,王丽,赵乙泽,范开放. 利用Sentinel-1的山东枣庄高新区地面沉降监测与分析. 地理空间信息. 2024(06): 80-83 .
    5. 杨芳,丁仁军,李勇发. 基于SBAS-InSAR技术的金沙江流域典型滑坡时空演化特征分析. 测绘通报. 2024(11): 102-107 .
    6. 祝杰,李瑜,师宏波,刘洋洋,韩宇飞,邵银星,王坦. 鹤岗煤矿区地面沉降时空特征InSAR时间序列监测研究. 中国地震. 2023(03): 596-608 .
    7. 柴龙飞,魏路,张震. 基于SBAS-InSAR的安徽省宿州市埇桥区2019—2022年地面沉降监测及影响因素分析研究. 安徽地质. 2023(04): 348-352 .
    8. 祝杰,韩宇飞,王坦,李瑜,王阅兵,师宏波,刘洋洋,樊俊屹,邵银星. 2017年九寨沟M_S7.0地震同震地表三维形变场解算研究. 中国地震. 2022(02): 348-359 .
    9. 吴毅彬,葛红斌,刘光庆,刘海旺. 基于MT-InSAR技术的厦门新机场填海区沉降监测. 工程勘察. 2021(02): 57-61 .
    10. 翟振起. 基于InSAR沉降监测技术的城市供水管线安全监测系统开发. 水利科学与寒区工程. 2021(01): 103-106 .
    11. 廖明生,王茹,杨梦诗,王楠,秦晓琼,杨天亮. 城市目标动态监测中的时序InSAR分析方法及应用. 雷达学报. 2020(03): 409-424 .
    12. 熊寻安,王明洲,龚春龙. MT-InSAR技术监测水库土石坝表面变形研究. 测绘地理信息. 2019(05): 78-81 .
    13. 王茹,杨天亮,杨梦诗,廖明生,林金鑫,张路. PS-InSAR技术对上海高架路的沉降监测与归因分析. 武汉大学学报(信息科学版). 2018(12): 2050-2057 .

    Other cited types(4)

Catalog

    Article views PDF downloads Cited by(17)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return